Day 29 回溯:491. 递增子序列, 46|47. 全排列 I II

491. Non-decreasing Subsequences

  • 思路
    • example
    • 返回所有该数组中不同的递增子序列(至少2个元素): 暴力回溯/DFS
    • 有重复元素
      • 去重: 同层 (横向遍历)
      • 不能排序
      • 利用hash (dict, set, list等)同层去重, key = 数值
    • 终止条件:start == len(nums), 纵向
    • 递增子序列中 至少有两个元素

有重不可复选

if len(path) >= 2:
    res.append(path[:])
  • 桶装球 (球=数字)
    • 桶:纵向遍历
    • 球:横向遍历
  • 复杂度. 时间:O(), 空间: O()
class Solution:
    def findSubsequences(self, nums: List[int]) -> List[List[int]]:
        def backtrack(nums, start):
            if len(path) >= 2:
                res.append(path[:])
            if start == len(nums): # 可不需要
                return 
            used = set()
            for i in range(start, len(nums)):
                if nums[i] in used or (path and nums[i] < path[-1]): # 递增子序列
                    continue 
                path.append(nums[i])
                backtrack(nums, i+1)
                path.pop()
                used.add(nums[i])
        res, path = [], []
        backtrack(nums, 0)
        return res 
class Solution:
    def findSubsequences(self, nums: List[int]) -> List[List[int]]:
        def backtrack(start):
            if len(path) >= 2:
                res.append(path[:])
            used = set()
            for i in range(start, n):
                if nums[i] in used:
                    continue 
                if path == [] or nums[i] >= path[-1]:
                    path.append(nums[i])
                    backtrack(i+1)
                    path.pop()
                    used.add(nums[i]) 
        res, path = [], []
        n = len(nums)
        backtrack(0)
        return res 
class Solution:
    def findSubsequences(self, nums: List[int]) -> List[List[int]]:
        def backtrack(start_idx):
            if len(path) >= 2:
                res.append(path[:]) 
            if start_idx == len(nums):
                return  
            used = set()
            for i in range(start_idx, len(nums)):
                if nums[i] in used:
                    continue   
                if path and nums[i] < path[-1]:
                    continue  
                path.append(nums[i]) 
                backtrack(i+1) 
                path.pop()   
                used.add(nums[i]) # !!!
        res, path = [], []  
        backtrack(0)  
        return res  

46. 全排列

  • 思路
    • example
    • 返回其所有可能的全排列: 暴力回溯
    • nums 中的所有整数 互不相同
      • 不需要去重
    • 使用used数组避免重复取元素
      • used[index] = True or False
    • start = 0


无重不可复选

  • 桶装球 (球=数字)
  • 复杂度. 时间:O(?), 空间: O(?)
class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        def backtrack(nums, path):
            if len(path) == len(nums):
                res.append(path[:])
            for i in range(len(nums)):
                if used[i] == True:
                    continue 
                path.append(nums[i])
                used[i] = True 
                backtrack(nums, path)
                used[i] = False 
                path.pop()
        res, path = [], []
        used = [False for _ in range(len(nums))]
        backtrack(nums, path)
        return res 
class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        def backtrack(depth):
            if len(path) == len(nums):
                res.append(path[:])
                return 
            for i in range(len(nums)):
                if used[i]:
                    continue 
                path.append(nums[i])
                used[i] = True
                backtrack(depth+1)
                used[i] = False 
                path.pop()                   
        res, path = [], []
        used = [False for _ in range(len(nums))]
        backtrack(1)
        return res 
class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        def backtrack(used):
            if len(path) == n:
                res.append(path[:]) 
                return   
            for i in range(n):
                if used[i]:
                    continue  
                path.append(nums[i]) 
                used[i] = True  
                backtrack(used)
                used[i] = False  
                path.pop()    
        n = len(nums)  
        used = [False for _ in range(n)]  
        res, path = [], [] 
        backtrack(used)  
        return res   

47. 全排列 II

  • 思路
    • example
    • 可包含重复数字
      • 去重 (同层去重,树层去重)
        • 排序
        • 第一个条件:used[i] = True: 第i个元素已经在前面几层使用过,当前层不能再取。
        • i > 0 and nums[i] == nums[i-1]: 重复元素。此时如果 used[i-1] == False,说明该数字(nums[i]=nums[i-1])在同层已经遍历过,不需要再取第i个数字接着遍历了。
          • 注意当i > 0 and nums[i] == nums[i-1] and used[i-1] == True时,第i个元素nums[i]是可以取的 (nums[i-1]在前面几层取得,不冲突)。例子:[1,1,2]


    • 桶装球 (球=数字)
      • 桶:纵向遍历,深度
      • 球:横向遍历 ,宽度(可选范围,去重)
  • 复杂度. 时间:O(?), 空间: O(?)
class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        def backtrack(nums, path):
            if len(path) == len(nums):
                res.append(path[:])
                return 
            for i in range(len(nums)):
                if used[i] == True or (i > 0 and nums[i] == nums[i-1] and used[i-1] == False):
                    continue # 树层避免重复取,同层去重
                path.append(nums[i])
                used[i] = True 
                backtrack(nums, path)
                used[i] = False 
                path.pop()                
        res, path = [], []
        nums.sort()
        used = [False for _ in range(len(nums))]
        backtrack(nums, path)
        return res 
class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        def backtrack(depth):
            if len(path) == len(nums):
                res.append(path[:])
                return 
            for i in range(len(nums)):
                if i > 0 and nums[i] == nums[i-1] and used[i-1] == False:
                    continue 
                if used[i] == True:
                    continue 
                path.append(nums[i])
                used[i] = True 
                backtrack(depth+1)
                used[i] = False 
                path.pop() 
        res, path = [], []
        nums.sort()
        used = [False for _ in range(len(nums))]
        backtrack(1)
        return res 
class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        def backtrack(used):
            if len(path) == n:
                res.append(path[:]) 
                return  
            for i in range(n):
                if used[i]:
                    continue  
                if i > 0 and used[i-1] == False and nums[i] == nums[i-1]: # !!!
                    continue  
                path.append(nums[i]) 
                used[i] = True  
                backtrack(used)  
                used[i] = False  
                path.pop()  
        n = len(nums) 
        nums.sort()
        used = [False for _ in range(n)] 
        res, path = [], [] 
        backtrack(used) 
        return res   
  • 拓展,下面代码做的是树枝去重,亦可。
if used[i] or (i > 0 and nums[i] == nums[i-1] and used[i-1] == True):
    continue 
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容