第一部分--基础知识--第3章:函数的增长--渐近记号、算法中常见函数介绍

说明:该系列博客整理自《算法导论(原书第二版)》,但更偏重于实用,所以晦涩偏理论的内容未整理,请见谅。另外本人能力有限,如有问题,恳请指正!

1、渐近符号

    当输入规模大到使运行时间只和增长的量级有关时,就是在研究算法的 渐近 效率。就是说,从极限角度看,我们只关心算法运行时间如何随着输入规模的无限增长而增长。通常,对不是很小的输入规模而言,从渐近意义上说更有效的算法是最佳的选择。

表示算法的渐近运行时间的记号是用定义域为自然数集 N = {0, 1, 2, …} 的函数来定义的。这些记号便于用来表示最坏情况运行时间 T ( n )。这些记号的定义域可以很容易地扩充至实数域或缩小到自然数的某个受限子集上,但要注意搞清楚这些表示法的准确含义,方能做到越规使用而不误用。

    1.1、Θ 记号:表示渐近值,即真实值在渐近值的基础上波动

        对一个给定的函数 g ( n ),用 Θ ( g ( n ))来表示函数集合:

        对任何一个函数 f ( n ),若存在正常数 c1 , c2 ,使当 n 充分大时, f ( n )能被夹在 c1 g ( n )和 c2 g ( n )之间,则 f ( n )属于集合 Θ ( g ( n ))。可以写成“ f ( n ) ∈ Θ ( g ( n ))”表示 f ( n )是 Θ ( g ( n ))的元素。不过,通常写成“ f ( n ) = Θ ( g ( n ))”来表示相同的意思。

        上图给出了函数 f ( n )和 g ( n )的直观图示,其中 f ( n ) = Θ ( g ( n ))。对所有位于 n0 右边的 n 值, f ( n )的值落在 c1 g ( n )和 c2 g ( n )之间。换句话说,对所有的 n >= n0 , f ( n )在一个常数因子范围内与 g ( n )相等。我们说 g ( n )是 f ( n )的一个 渐近确界 。

        Θ ( g ( n ))的定义要求每个成员 f ( n ) ∈ Θ ( g ( n ))都是 渐近非负 ,就是说当 n 足够大时 f ( n )是非负值。这就要求函数 g ( n )本身也是渐近非负的,否则集合 Θ ( g ( n ))就是空集。

        Θ 记号表示渐近值,效果相当于舍弃了低阶项和忽略了最高阶项的系数,即真实值在渐近值的基础上波动

    1.2、O 符号:表示上界

        Θ 记号表示渐近值。当只有 渐近 上界时,使用 O 记号。对一个函数 g ( n ),用 O ( g ( n ))表示一个函数集合:

        上图说明了 O 记号的直观意义。对所有位于 n0 右边的 n 值,函数 f ( n )的值在 g ( n )下。

    1.3、Ω 记号:表示下界

        Ω 记号给出了函数的渐近下界。给定一个函数 g ( n ),用 Ω ( g ( n ))表示一个函数集合:


        上图说明了 Ω 记号的直观意义。对所有在 n0 右边的 n 值,函数 f ( n )的数值等于或大于 c g ( n )。

        定理

            对任意两个函数 f ( n )和 g ( n ), f ( n ) = Θ ( g ( n ))当且仅当 f ( n ) = O ( g(n))和 f ( n ) = Ω ( g ( n ))。

    1.4、o 记号

        O 记号提供的渐近上界可能是也可能不是渐近紧确的。这里用 o 记号表示非渐近紧确的上界。 o ( g ( n ))的形式定义为集合:

        O 记号与 o 记号的主要区别在于对 f ( n ) = O ( g ( n )),界0 <= f ( n ) <= c g ( n )对某个常数 c > 0成立;但对 f ( n ) = o ( g ( n )),界0 <= f ( n ) <= c g ( n )对所有常数 c > 0都成立。即

    1.5、ω 记号

        我们用 ω 记号来表示非渐近紧确的下界。 ω ( g ( n ))的形式定义为集合:

        关系 f ( n ) = ω ( g ( n ))意味着

        如果这个极限存在。也就是说当 n 趋于无穷时, f ( n )相对 g ( n )来说变得任意大了。

2、算法中常见函数介绍

    暂未整理

3、参考文档

    算法导论读书笔记(3)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容

  • 版本记录 前言 将数据结构和算法比作计算机的基石毫不为过,追求程序的高效是每一个软件工程师的梦想。下面就是我对算法...
    刀客传奇阅读 1,879评论 0 0
  • 现在的记性很差,差到想不起来写一篇文章,写一些心事。 人性本善还是人性本恶,以前我一直在思考这个话题,现在大概有答...
    光小年与恒小星阅读 266评论 0 0
  • 假期里面没有去看人山人海,躲在家里自然免不了要跟父母家人打2场麻将。这可真是难为我,长到这么大,还不会打麻将,真是...
    sundy小王阅读 209评论 0 3
  • 在土地上,我只是棵草, 无论怎样,都坚守着自己的骄傲。 狂风暴雨压不垮, 好吧,这就是我的骄傲。 我就是这样傲娇,...
    炀歧阅读 252评论 10 24