1、一个知识有15%的新内容,85%是熟悉的内容。这些研究表明,在这个点上,人们对学习的投入度是最高的。
喜欢=熟悉 +意外(15%)
15.87%不但是学习中的最佳训练出错率,也是心流率,也是文艺作品最佳意外率。电子游戏的设计者也得用这个比率。如果在这个游戏关卡中玩家都一点都不会犯错,轻松过关,那游戏就太简单了,玩家会感到无聊。如果让玩家频频犯错,那设置太难了,也玩不下去。15%左右的犯错率,是最好玩的游戏。
2、及时正面反馈和提高反馈速度(效率)
3、保持与对方持续沟通。这个“对方”可以是人,也可以是学习资料,等等。只要是学习的对象就行。(有点和第三条相似)
能让你判断错误的东西才是你需要学习的东西!不是说我们对一个什么知识掌握85%就行了,我们关注的恰恰是那15%的事先不会的东西。
所以最科学的安排不是说期末考试应该得85分,而是在每次学习之前,安排学习内容的时候,确保有15%的新东西。
比如说学英语。最理想的一篇课文,应该是其中85%的内容是你熟悉的,15%的内容—— 包括单词和语法 —— 对你来说是新的。
学数学,每一个新知识都是建立在旧知识的基础之上。最好这一讲中85%的操作是你本来就会的,15%是新技巧。
读书,最理想的情况是书中85%的内容让你有亲切感,另外15%是改造你的世界观。
所以,由此可见:
第一,熟悉很重要。
在学习中遇到熟悉的东西,可以巩固我们的知识,让我们再次确认以前学的是对的。这并不仅仅是心理上的安慰!人工智能神经网络不需要心理安慰,它是冷酷无情的,但是它也需要熟悉的内容。
所以“学习区”不是一个感情上的问题,而是大脑认知的问题。新信息重要,旧信息也很重要。
第二,15.87%这个数值是通用的吗?
研究者的理论推导用的是一个特殊的数学模型,但是他们的数值模拟,包括考察其他领域中的训练,结果差不多也都是这个数值。如果我们相信人脑本质上就是一个神经网络,那么这个研究就具有普遍的意义。我私下认为这个数值在任何一个领域中都不会太离谱。
第三,你应该时刻追求效率最大化。知道一个道理有用,和知道这个道理有*多么*有用,有本质区别。
每个人都知道要想学习好,你应该谦虚谨慎、博采众长、尊师重道、眼光放长远、有很大的格局。可是要谦虚到什么程度才好?格局最大要多大?这些都没有量化,不好操作。
但是15.87%这个最优意外率是可以操作的。15%和5%的进步速度有非常明显的差异。我们设想有两个爱学习的人 ——
A同学对什么都感兴趣,博览群书还选修了很多课程。他有时候觉得所学的内容很轻松,有时候感到吃力,但他总是那么用功。A同学热爱学习,他觉得自己学得很不错。
但是世界上还可能存在一个B同学。B同学有个教练,给他精心安排每次学习的内容,确保每次15%的意外率。B同学的学习效率达到了最大化。
我们知道那是一个特别理想的状态,没有人能确保这样的高效率。但是根据这一讲的理论,假以时日,B同学的学习成就将会远远超过A同学。你想想这是多么可怕的一个事实。