不可错过的单细胞转录组研究新维度:空间转录组

作者:路子
审稿:童蒙
编辑:amethyst

引言

把病理切片裂解制备成单细胞悬液,得到了“是什么”,却丢失了“在哪里”。如何兼得类型和位置信息呢?follow me! 跟小编一起解开空间转录组技术的面纱吧。


在生命科学研究的道路上,历经了多组学联合覆盖“面”的,单细胞技术涉及“点”的研究历程,为了更加深入地对生命机制,疾病机理等研究,科学家不断发明新的技术,丰富新的维度,空间转录组技术也由此得到了很大的提升,操作上由繁至简,技术上由少至多。今天跟大家分享的便是10X Genomics Visium 系统。

初识 10X Genomics Visium

该系统可以划分为5个部分,样本制备、显微镜成像、文库构建、上机测序和数据分析。其中样本制备芯片是承载空间转录组信息捕获的核心技术,capture Area 为6.5 x 6.5 mm捕获点阵组成,每个点阵上包含有直径55μm、间距100μm的携带空间Barcodes和UMI、Poly(dT)的探针群组成。结构如下图所示:

01 样本制备

在样本制备之前,建议先进行组织优化,如下所示对待研究的组织进行透化时间摸索,一般根据研究的样本设置30分钟以内的时间梯度段,该示例为小鼠脑组织,透化时间根据显影选择18min。

选择好透化的时间,就可以进行样本的制备了。注意组织切片不能覆盖芯片红色边框区域。

02 文库构建

10X Genomics Visium 空间转录组文库结构如图所示:

03 上机测序

10X Genomics Visium 系统对接大部分illumina测序平台,下机测序数据为fastq格式。由上述文库结构也可以得知,最后将获得包含空间barcode和UMI信息的28bp的Read1和捕获到的120bp的RNA目标序列Read2。

04 数据分析

10X Genomics visium 提供了两款软件用以空间转录组数据的分析。一个是基于命令行进行图片和测序数据处理的软件SpaceRanger;一个是基于交互操作的可视化分析软件Loupe Browser。这两款软件都可以在其官网上获得,并且操作也比较简单。除此之外,也可以用seurat 单细胞分析的R软件包进行。

1 Space Ranger 分析

整体分析流程如图所示:

Space Ranger Pipeline 分步如下:

Step1:下载软件和参考数据库,自行在10X官网上下载;

Step2:解压软件和参考数据库文件;

tar -xzvf spaceranger-1.0.0.tar.gz
tar -xzvf refdata-cellranger-mm10-3.0.0.tar.gz

Step3:准备数据,执行命令行操作;

这里下载官网demo数据进行。

Space Ranger 包含以下功能,依次为fastq 文件转化、数据分析、文件格式转化、建库gtf文件转化、参考数据库构建、流程测试、上传日志和计算节点检查。mkfastq、mkref 和count 是常用的命令功能。

spaceranger mkfastq
spaceranger count
spaceranger mat2csv

spaceranger mkgtf
spaceranger mkref

spaceranger testrun
spaceranger upload
spaceranger sitecheck
spaceranger-1.0.0/bin/spaceranger count --id=分析的样本名称 --fastqs=待分析的fastq路径 --transcriptome=refdata-cellranger-mm10-3.0.0 --image=组织H&E图片(.jpg or .tiff格式 ) --unknown-slide(--slide=SLIDE 芯片的编号 --area=AREA组织所在的芯片区域) --sample=fastq文件前缀 --localcores=20 --localmem=128
  • Tips :
    虽然空间芯片一共仅5000个Spots,但是程序需要位置信息的匹配等一系列操作,所以需要相当大的内存和线程。一般仅400M reads 数据,按照20个线程,128G内存,运行时间在4-6小时之间。

Step4:数据结果解读。

其中,

  • analysis/文件夹包含了二次分析的结果文件,Spots 聚类信息;

  • *.cloupe文件可以导入Loupe Browser进行可视化分析的;

  • filtered_feature_bc_matrix 为空间Spots基因表达矩阵文件;

  • Spatial/文件夹包含图像文件和图像位置信息文件;

  • web summary.html 是空间转录组分析样本的基本信息文件,可以作为项目的质控文件(后期文章我们将会对空间转录组质控进行专一详细的介绍,敬请期待哦)。

2 Loupe Browser

Loupe Browser 可视化软件,操作个性化较强,也比较简单,这里就不做赘述了(后期文章我们将会对该软件进行专一详细的介绍,敬请期待哦)。这里需要了解的是它可以做组织H&E图片的矫正处理即可。

3 Seurat 分析

Seurat 是一款特别出色的单细胞分析R包,曾经推出了很多优秀的单细胞分析解决方案,在2019年年底推出了空间转录组分析的Seurat3.2版本。今天就和大家一起目睹下它的风采吧~

Step1:Seurat3.2安装;

在安装新版的seurat 之前,需要先安装R3.6版本

devtools::install_github("satijalab/seurat", ref = "spatial")
##也可以先行下载到本地进行安装install.packages("satijalab-seurat-v3.1.1-302-g1cb8a3d.tar.gz", repos = NULL, type = "source")

Step2:读取数据

##先导入需要的R包
library(Seurat)
library(ggplot2)
library(cowplot)
library(dplyr)
##官网直接导入的SeuratData,library(SeuratData)当然我们可以用前面Space Ranger运行的结果数据进行分析
brain<-Seurat::Load10X_Spatial("/path/out/") #读取数据的路径下应包含两个文件,表达矩阵文件和组织图片文件夹,即filtered_feature_bc_matrix.h5 和spatial/

Step3:数据展示

数据预处理,空间Spots表达水平

plot1 <- VlnPlot(brain, features = "nCount_Spatial", pt.size = 0.1) + NoLegend()
plot2 <- SpatialFeaturePlot(brain, features = "nCount_Spatial") + theme(legend.position = "right")
plot_grid(plot1, plot2)

降维聚类分析

brain <- SCTransform(brain, assay = "Spatial", return.only.var.genes = FALSE, verbose = FALSE)##用SCT进行归一化
brain <- GroupCorrelation(brain, group.assay = "Spatial", assay = "SCT", slot = "scale.data", do.plot = FALSE)## 计算SCT noraml与表达水平的相关性
##降维,聚类
brain <- RunPCA(brain, assay = "SCT", verbose = FALSE)
brain <- FindNeighbors(brain, reduction = "pca", dims = 1:20)
brain <- FindClusters(brain, verbose = FALSE)
brain <- RunUMAP(brain, reduction = "pca", dims = 1:20
p1 <- DimPlot(brain, reduction = "umap", label = TRUE)
p2 <- SpatialDimPlot(brain, label = TRUE, label.size = 3)plot_grid(p1, p2)

寻找marker基因

object.markers <- FindAllMarkers(object = brain, only.pos = FALSE, min.pct = 0.20, logfc.threshold = 0.25)
top <- object.markers %>% group_by(cluster) %>% top_n(1, avg_logFC) ##取每个cluster差异最显著的一个marker基因
VlnPlot(object = brain, features = top$gene, ncol = 2, pt.size = 0,idents=top$cluster)##对选取的marker基因进行小提琴图型展示
SpatialFeaturePlot(brain, features = top$gene, ncol = 3, pt.size.factor = 10)#marker基因高亮展示

介绍到这里相信大家对空间转录组10X Genomics visium 分析流程和Seurat 包数据分析都有了一定的了解,那么这项技术主要应用在哪些方面呢?跟自己正研究或者待研究的课题有什么辅助指导意义呢?那就敬请关注我们下一讲吧,空间转录组应用研究思路。我们先预告一下应用领域,如下:

参考文献

https://support.10xgenomics.com/spatial-gene-expression
https://satijalab.org/seurat/vignettes.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容