连续时间信号与系统的频域分析(3.1)周期信号分解为傅里叶级数

3.1周期信号分解为傅里叶级数


1.周期信号

周期信号满足f(t)=f(t-nT),n为整数

周期的倒数称为频率,即f_{0}^=\frac{1}{T} ,而\omega _{0}=\frac{2\pi }{T}  称为该信号的角频率

2.傅里叶级数

周期为T的信号f(t),若满足狄利克雷条件,就可以展开为三角形式的傅里叶级数或指数形式的傅里叶级数。

狄利克雷条件是指:

(1)函数在一个周期内绝对可积,即\int_{t₁}^{t₁+T} \vert f(t) \vert dt<∞

(2)在一个周期内函数是有有限个极大值和极小值

(3)在一个周期内,函数只有有限个不连续的点,且在这些不连续的点上,函数是有限值


3.1.1三角形式的傅里叶级数

周期信号三角形式的傅里叶级数

f(t)=a_{0} +\sum_{n=1}^∞[a_{n}cosn\omega _{0} t+b_{n}sinn\omega _{0} t ]

f(t)=A_{0}+\sum_{n=1}^∞A_{n}cos (n\omega _{0}t+\varphi _{n})

3.1.2 指数形式的傅里叶级数

周期信号指数形式的傅里叶级数

f(t)=\sum_{n=-∞}^∞F_{n}e^(jn\omega _{0}t)

复数Fn称为傅里叶级数的复系数

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容

  • 任何读过大学的同学,都多少会接触到傅里叶变换,因为傅里叶变换在很多方面都有应用,只要涉及到信号与系统的地方,都会提...
    技术烧阅读 12,520评论 0 8
  • 深入理解傅里叶变换Mar 12, 2017 这原本是我在知乎上对傅立叶变换、拉普拉斯变换、Z变换的联系?为什么要进...
    价值趋势技术派阅读 5,744评论 2 2
  • 傅里叶分析之掐死教程(完整版)更新于2014.06.06 作 者:韩 昊 知 乎:Heinrich 微 博:@花生...
    星易乾川阅读 398评论 0 0
  • 定义 一、傅里叶级数 法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函...
    MiracleJQ阅读 6,068评论 1 7
  • 听完王菲老师的课,了解完她的故事,我的思绪久久不能平静。王菲老师所讲的故事,不仅仅展现了她以前工作的情景,...
    会宁612马淑平阅读 546评论 0 0