逻辑回归与梯度下降详解

逻辑回归

Sigmoid函数:

Sigmoid函数

梯度:

梯度的表达式

这个梯度是指:沿着x方向移动

个单位,沿着y方向移动
个单位。函数f(x,y)在这一点上有定义并且可微,每个单位长度自行设定,称为步长,记为

梯度上升算法到达每个点后都会重新计算移动的方向,不断迭代移动,直到满足停止条件,停止条件可以是一个确定的迭代次数或是达到较小的误差。在迭代过程中,梯度总是选取最佳的移动方向。

权值调整公式

利用该算法(梯度下降)进行求解优化问题:

权值Weights更新:weights=weights+alphadata.transpose()error 按误差方向调整权重(回归系数)。即可以写成:

权值根据误差分方向进行调整

增量是关于误差的一个函数。

随机梯度上升算法:

梯度上升算法每次更新都需要遍历整个数据集,如果数据量巨大,则耗时很大,复杂度高。改进方法:一次仅用户一个样本点来更新回归系数(随机梯度上升)。由于其在新样本到来时对分类器进行增量式更新,因而这是一个在线学习算法。

用代码来看两者的区别:

梯度上升:

for i in range(max_step):

      h = sigmoid(data_mat * weights)

      err = (label_mat - h)

      weights = weights + alpha * data_mat.transpose() * err

return weights

用全局的误差来更新weights

随机梯度上升:

for i in range(n):

        h = sigmoid(numpy.sum(data[i] * weights))

        err = label[i] - h

        weights = weights + data[i] * alpha * err

return weights

一个点只计算一次,遍历时使用当前点计算出的误差来调整本次的权值。

两者区别在计算误差的方式上。

其实怎么选取不重要,根据实验可以得到:随机选取和遍历每一个求得当前的误差,最后在于循环计算的次数,当次数趋向于一个合适的值时,误差稳定且较小,则此时分类即完成。

http://blog.csdn.net/qq_20945297/article/details/78552273

如果这不是一个凸优化问题,梯度下降势必会遇到局部最小(极小值)的情况

如何应对其局部最小的问题:

1、 以多组不同参数值初始化多个神经网络,按标准方法训练后,取其中误差最小的解作为最终参数;这就是从多个不同的初始点开始搜索寻优,这样陷入不同的局部极小值,从而选取更可能接近全局最小的解;

2、 使用模拟退火:以一定的概率接受比当前解更差的结果,每步迭代中,接受次优解的概率要随着时间推移降低,保证算法能够收敛;

3、 使用随机梯度下降,这样计算出的梯度仍可能不为0,这样就可能跳出局部极小值。

我的博客即将搬运同步至腾讯云+社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351