初步了解支持向量机(SVM)-1

从今天开始整理一些关于支持向量机-Support Vector Machine 的相关知识,大约发6-8篇的博客,敬请关注~欢迎推荐~

        好了,由于这个东西本身就不好懂,要深入学习需要花费较多的时间和理。虽然现在网上有较多的参考文xian写的很不错,但是自己在学习的时候感觉所描述的数学公式还不够详尽,所以,借助于网上的一些资料和自己的理解,尝试整理一份比较适合初学者理解的资料。在这之前参考了较多的资料,有“支持向量机导论”,“统计学习方法”以及网上的一些博客,就不一一的详细列出了。

还是那句话,有任何问题,请随时不吝指正~

1  什么是支持向量机(SVM)

        便于理解,从简单的分类说气,分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),该模型能把数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知类别。

所谓支持向量机,顾名思义,分为两个部分了解:一,什么是支持向量(简单来说,就是支持或支撑平面上把两类类别划分开来的超平面的向量点,下文将具体解释);二,这里的“机(machine,机器)”便是一个算法。在机器学习领域,常把一些算法看做是一个机器,如分类机(当然,也叫做分类器),而支持向量机本身便是一种监督式学习的方法(至于具体什么是监督学习与非监督学习,请参见此系列Machine Learning & Data Mining 第一篇),它广泛的应用于统计分类以及回归分析中。

而支持向量机是90 年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。

2 关于线性分类

在讲SVM 之前,必须先弄清楚一个概念:线性分类器(也可以叫做感知机)。

2-1 分类标准

未接简单起见,考虑的是一个两类的分类问题(多分类问题类似,只是延拓一下),数据点用x 来表示,这是一个n 维向量,wT 上标中的“T”代表转置,而类别用y 来表示,可以取1 或者–1 ,分别代表两个不同的类。一个线性分类器就是要在n 维的数据空间中找到一个超平面,其方程可以表示为:

wTx + b = 0 (1.2.1)

上面给出了线性分类的定义描述,但或许读者没有想过:为何用y 取1 或者–1 来表示两个不同的类别呢?其实,这个1 或–1 的分类标准起源于Logistic 回归,为了完整和过渡的自然性,咱们就再来看看这个Logistic 回归。

2-2 1 或−1 分类标准的起源:Logistic 回归

使用的结果标签是y = −1,y = 1,替换在logistic 回归中使用的y = 0 和y = 1。同时将 替换成w 和b。以前的

Tx = θ0 + θ1x1 + θ2x2 + · · · + θnxn,

其中认为x0 = 1。现在我们替换θ0 为b,后面替换

θ1x1 + θ2x2 + · · · + θnxn 

为w1x1 + w2x2 + · · · + wnxn(即wTx)。这样,我们让Tx = wTx + b,进一步

h(x) = g(Tx) = g(wTx + b)。

也就是说除了y 由y = 0 变为y = −1,只是标记不同外,与logistic 回归的形式化表示没区别。

        再明确下假设函数

hw;b(x) = g(wTx + b)

上面提到过我们只需考虑Tx 的正负问题,而不用关心g(z),因此我们这里将g(z) 做一个简化,将其简单映射到y = −1 和y = 1 上。映射关系如下:

g(z) =      1, z ≥ 0

            −1, z < 0

于此,想必已经解释明白了为何线性分类的标准一般用1 或者–1 来表示。

2-3 线性分类的一个实例

下面举个简单的例子,一个二维平面(一个超平面,在二维空间中的例子就是一条直线),如下图所示,平面上有两种不同的点,分别用两种不同的颜色表示,一种为红颜色的点,另一种则为蓝颜色的点,红颜色的线表示一个可行的超平面。

我们可以看出,这条红颜色的线把红颜色的点和蓝颜色的点分开来了。而这红颜色的线就是我们上面所说的超平面,也就是说,这个所谓的超平面的的确确便把这两种不同颜色的数据点分隔开来,在超平面一边的数据点所对应的y 全是–1,而在另一边全是1。接着,我们令分类函数

f(x) = wTx + b 

显然,如果f(x) = 0,那么x 是位于超平面上的点。我们不妨要求对于所有满足f(x) < 0 的点,其对应的y 等于–1,而f(x) > 0 则对应y = 1 的数据点。

当然,有些时候,或者说大部分时候数据并不是线性可分的,这个时候满足这样条件的超平面就根本不存在,这里先从最简单的情形开始推导,就假设数据都是线性可分的,亦即这样的超平面是存在的。更进一步,我们在进行分类的时候,将数据点x 代入f(x) 中,如果得到的结果小于0,则赋予其类别–1,如果大于0 则赋予类别1。如果f(x) = 0,则很难办了,分到哪一类都不是。

(1) 咱们就要确定上述分类函数f(x) = w · x+b(w · x 表示w 与x 的内积)中的两个参数w 和b,通俗理解的话w 是法向量,b 是截距(再次说明:定义特征到结果的输出函数u = ⃗w · ⃗x− b,与我们最开始定义的f(x) = wTx + b 实质是一样的)。

(2) 那如何确定w 和b 呢?答案是寻找两条边界端或极端划分直线中间的最大间隔(之所以要寻最大间隔是为了能更好的划分不同类的点,下文你将看到:为寻最大间隔,导出1/2∥w∥^2,继而引入拉格朗日函数和对偶变量,化为对单一因数对偶变量 的求解,当然,这是后话),从而确定最终的最大间隔分类超平面和分类函数;

(3) 进而把寻求分类函数f(x) = w · x + b 的问题转化为对w、b 的最优化问题,最终化为对偶因子的求解。

总结成一句话即是:从最大间隔出发(目的本就是为了确定法向量w),转化为求对变量w 和b 的凸二次规划问题。亦或如下所示。

3 函数间隔与几何间隔

一般而言,一个点距离超平面的远近可以表示为分类预测的确信或准确程度。在超平面w · x + b 确定的情况下,|w · x + b| 能够相对的表示点x 到距离超平面的远近,而w · x + b 的符号与类标记y 的符号是否一致表示分类是否正确,所以,可以用量y · w · x + b 的正负性来判定或表示分类的正确性和确信度。

于此,我们便引出了定义样本到分类间隔距离的函数间隔的概念。

3-1 函数间隔

我们定义函数间隔为

^γ = y(wTx + b) = yf(x)

接着,我们定义超平面(w, b) 关于训练数据集T 的函数间隔为超平面(w, b) 关于T 中所有样本点(xi, yi) 的函数间隔最小值,其中x 是特征,y 是结果标签,i 表示第i 个样本,有

^γ = min ^γi, i = 1, 2, · · · , n 

然与此同时,问题就出来了。上述定义的函数间隔虽然可以表示分类预测的正确性和确信度,但在选择分类超平面时,只有函数间隔还远远不够,因为如果成比例的改变w 和b,如将他们改变为2w 和2b,虽然此时超平面没有改变,但函数间隔的值yf(x) 却变成了原来的4 倍。其实,我们可以对法向量w 加些约束条件,使其表面上看起来规范化,如此,我们很快又将引出真正定义点到超平面的距离——几何间隔的概念。

3-2 几个间隔

在给出几何间隔的定义之前,咱们首先来看下,如图1.4所示,对于一个点x,令其垂直投影到超平面上,对应的为x0,由于w 是垂直于超平面的一个向量,γ 为样本x 到分类间隔的距离,我们有

x = x0 + γ*w / ∥w∥

又由于x0 是超平面上的点,满足f(x0) = 0,代入超平面的方程即可算出

γ =(wTx + b)/∥w∥=f(x)/∥w∥

不过这里的γ 是带符号的,我们需要的只是它的绝对值,因此类似地,也乘上对应的类别y 即可,因此实际上我们定义几何间隔为

~γ = yγ =^γ/∥w∥

换而言之,函数间隔y(wTx + b) = yf(x) 实际上就是|f(x)|,只是人为定义的一个间隔度量;而几何间隔|f(x)|/∥w∥才是直观上的点到超平面距离。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容