给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
说明:
给定 n 的范围是 [1, 9]。
给定 k 的范围是[1, n!]。
示例 1:
输入: n = 3, k = 3
输出: "213"
示例 2:
输入: n = 4, k = 9
输出: "2314"
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/permutation-sequence
主要是题中解释的思路,我想的和他有些不同但是没考虑全,只能将这个摘抄上来。
class Solution {
public String getPermutation(int n, int k) {
/**
直接用回溯法做的话需要在回溯到第k个排列时终止就不会超时了, 但是效率依旧感人
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推
算出来, 对于n=4, k=15 找到k=15排列的过程:
1 + 对2,3,4的全排列 (3!个)
2 + 对1,3,4的全排列 (3!个) 3, 1 + 对2,4的全排列(2!个)
3 + 对1,2,4的全排列 (3!个)-------> 3, 2 + 对1,4的全排列(2!个)-------> 3, 2, 1 + 对4的全排列(1!个)-------> 3214
4 + 对1,2,3的全排列 (3!个) 3, 4 + 对1,2的全排列(2!个) 3, 2, 4 + 对1的全排列(1!个)
确定第一位:
k = 14(从0开始计数)
index = k / (n-1)! = 2, 说明第15个数的第一位是3
更新k
k = k - index*(n-1)! = 2
确定第二位:
k = 2
index = k / (n-2)! = 1, 说明第15个数的第二位是2
更新k
k = k - index*(n-2)! = 0
确定第三位:
k = 0
index = k / (n-3)! = 0, 说明第15个数的第三位是1
更新k
k = k - index*(n-3)! = 0
确定第四位:
k = 0
index = k / (n-4)! = 0, 说明第15个数的第四位是4
最终确定n=4时第15个数为3214
**/
StringBuilder sb = new StringBuilder();
// 候选数字
List<Integer> candidates = new ArrayList<>();
// 分母的阶乘数
int[] factorials = new int[n+1];
factorials[0] = 1;
int fact = 1;
for(int i = 1; i <= n; ++i) {
candidates.add(i);
fact *= i;
factorials[i] = fact;
}
k -= 1;
for(int i = n-1; i >= 0; --i) {
// 计算候选数字的index
int index = k / factorials[i];
sb.append(candidates.remove(index));
k -= index*factorials[i];
}
return sb.toString();
}
}
我当时考虑的是k从1开始,1到k,应该是从0到k-1少考虑一个整除的情况。从1开始的话,比如6/6就是1,但是是第二层还是第一层就不是很明确了,如果从0到k-1,5/6就是第一层。
下面附上我改的,可能有些地方理解的不是很好。
public String getPermutation(int n, int k) {
ArrayList<Integer> p = new ArrayList<Integer>();
StringBuffer s = new StringBuffer();
for(int i = 1 ; i <= n ; i++){
p.add(i);
}
k--;
while(n-1 >= 0){
int index = k / fac(n-1);
s.append(p.remove(index-1));
k -= fac(n-1)*index;
n--;
}
return s.toString();
}
public int fac(int n){
int m=1;
for(int i = 1 ; i <= n ; i++){
m = m * i;
}
return m;
}