单细胞实战(3):STAR分析单细胞数据

前言

在利用cellranger比对单细胞reads时,可以发现有STAR的进程夹杂在里面,那么STAR可以用来比对单细胞数据吗?在STAR的2.7版本中(2.7.6a)出现了STARsolo,可以进行单细胞数据的比对,由此可见STAR的强大

Cellranger输出结果

在使用STAR之前,先看一下cellranger的输出结果

.
├── analysis
│   ├── clustering
│   ├── diffexp
│   ├── pca
│   ├── tsne
│   └── umap
├── cloupe.cloupe
├── filtered_feature_bc_matrix
│   ├── barcodes.tsv.gz
│   ├── features.tsv.gz
│   └── matrix.mtx.gz
├── filtered_feature_bc_matrix.h5
├── metrics_summary.csv
├── molecule_info.h5
├── possorted_genome_bam.bam
├── possorted_genome_bam.bam.bai
├── raw_feature_bc_matrix
│   ├── barcodes.tsv.gz
│   ├── features.tsv.gz
│   └── matrix.mtx.gz
├── raw_feature_bc_matrix.h5
└── web_summary.html

为方便查看,cellranger提供了一个网页端的结果,我们主要观察细胞和基因数目的评估即可,后续的聚类工作由seurat完成

在结果目录,可以看到如下两个目录

raw_feature_bc_matrix

filtered_gene_bc_matrices

raw目录下是所有的barcode信息,包含了细胞相关的barcoed和背景barcode,而filter目录下只包含细胞相关的barcode信息,内容如下

│   ├── barcodes.tsv.gz
│   ├── features.tsv.gz
│   └── matrix.mtx.gz

后缀为mtx的文件记录的就是基因的表达量信息,可以导入R或者python中查看,barcodes相当于一个细胞,features代表不同的基因,barcodes文件在STARsolo中会用到,这就是为什么我要先说明一下cellranger的输出结果

利用STAR分析10X数据

STARsolo被设计为替代10X CellRanger基因定量比对软件。而且STARsolo的速度是cellranger的十倍(具体怎么样我也不知道)

建立索引:

STAR --runMode genomeGenerate --genomeDir ghg38/ --genomeFastaFiles Homo_sapiens.GRCh38.dna.primary_assembly.fa --sjdbGTFfile Homo_sapiens.GRCh38.93.filtered.gtf

其实利用cellranger构建的索引原则上也能用,在GRCh38/star/下,但是由于STAR版本问题可能会导致无法识别,因为cellranger用的STAR构建的索引和我们自己用的STAR版本是不一致的。

STARsolo与普通的转录组比对区别在于你需要在比对时加上whitelist,whitelist文件格式在10X官网有写,我们可以利用cellranger的barcodes.tsv.gz文件获得

zcat barcodes.tsv.gz>whitelist
sed -i "s\-1\\g" whitelist

需要注意ReadFilesIn先读入测序数据,再读入barcode+UMI文件,即先读入R2再读入R1

STAR  --genomeDir ghg38/ --readFilesCommand zcat --readFilesIn SRR7722939/SRR7722939_S1_L001_R2_001.fastq.gz SRR7722939/SRR7722939_S1_L001_R1_001.fastq.gz --soloType CB_UMI_Simple --soloCBwhitelist whitelist --runThreadN 8

结果默认保存在Solo.out文件中,8线程只用了10min左右,确实要快一点

├── Barcodes.stats
└── Gene
    ├── Features.stats
    ├── filtered
    │   ├── barcodes.tsv
    │   ├── features.tsv
    │   └── matrix.mtx
    ├── raw
    │   ├── barcodes.tsv
    │   ├── features.tsv
    │   └── matrix.mtx
    ├── Summary.csv
    └── UMIperCellSorted.txt

看一下Summary里是啥

Number of Reads,23095815
Reads With Valid Barcodes,0.979732
Sequencing Saturation,0.529367
Q30 Bases in CB+UMI,0.991351
Q30 Bases in RNA read,0.842989
Reads Mapped to Genome: Unique+Multiple,0.959769
Reads Mapped to Genome: Unique,0.874368
Reads Mapped to Transcriptome: Unique+Multipe Genes,0.63797
Reads Mapped to Transcriptome: Unique Genes,0.613655
Estimated Number of Cells,2048
Reads in Cells Mapped to Unique Genes,12815372
Fraction of Reads in Cells,0.904219
Mean Reads per Cell,6257
Median Reads per Cell,5544
UMIs in Cells,5978718
Mean UMI per Cell,2919
Median UMI per Cell,2577
Mean Genes per Cell,915
Median Genes per Cell,873
Total Genes Detected,16265

可以看到比起cellranger,STAR捕获到的细胞数少一点,而且每个细胞的reads要低一点,其他差不多,后续将使用Seurat包对两组数据进行比较

STARsolo其他命令

--soloType
default: None
string(s): type of single-cell RNA-seq
CB_UMI_Simple
(a.k.a. Droplet) one UMI and one Cell Barcode of xed length in
read2, e.g. Drop-seq and 10X Chromium.
CB_UMI_Complex
one UMI of xed length, but multiple Cell Barcodes of varying length,
as well as adapters sequences are allowed in read2 only, e.g. inDrop.
CB_samTagOut
output Cell Barcode as CR and/or CB SAm tag. No UMI counting.
{readFilesIn cDNA read1 [cDNA read2 if paired-end]
CellBarcode read . Requires {outSAMtype BAM Unsorted [and/or
SortedByCoordinate]
SmartSeq
Smart-seq: each cell in a separate FASTQ (paired- or single-end),
barcodes are corresponding read-groups, no UMI sequences,
alignments deduplicated according to alignment start and end (after
extending soft-clipped bases)

--soloCBwhitelist
default: -
string(s): le(s) with whitelist(s) of cell barcodes. Only {soloType
CB UMI Complex allows more than one whitelist le.
None
no whitelist: all cell barcodes are allowed

--soloCBstart
default: 1
int>0: cell barcode start base

--soloCBlen
default: 16
int>0: cell barcode length
--soloUMIstart
default: 17
int>0: UMI start base

--soloUMIlen
default: 10
int>0: UMI length

--soloBarcodeReadLength
default: 1
int: length of the barcode read
1
equal to sum of soloCBlen+soloUMIlen
0
not dened, do not check
--soloCBposition
default: -
strings(s) position of Cell Barcode(s) on the barcode read.
Presently only works with {soloType CB UMI Complex, and barcodes are
assumed to be on Read2.
Format for each barcode: startAnchor startPosition endAnchor endPosition
start(end)Anchor denes the Anchor Base for the CB: 0: read start; 1: read
end; 2: adapter start; 3: adapter end
start(end)Position is the 0-based position with of the CB start(end) with
respect to the Anchor Base
String for di�erent barcodes are separated by space.
Example: inDrop (Zilionis et al, Nat. Protocols, 2017):
{soloCBposition 0 0 2 -1 3 1 3 8
--soloUMIposition
default: -
string position of the UMI on the barcode read, same as soloCBposition
--soloAdapterSequence
default: -
string: adapter sequence to anchor barcodes.
--soloAdapterMismatchesNmax

default: 1
int>0: maximum number of mismatches allowed in adapter sequence.
--soloCBmatchWLtype
default: 1MM multi
string: matching the Cell Barcodes to the WhiteList
Exact
only exact matches allowed
1MM
only one match in whitelist with 1 mismatched base allowed. Allowed
CBs have to have at least one read with exact match.
1MM_multi
multiple matches in whitelist with 1 mismatched base allowed,
posterior probability calculation is used choose one of the matches.
Allowed CBs have to have at least one read with exact match. Similar to
CellRanger 2.2.0
1MM_multi_pseudocounts
same as 1MM Multi, but pseudocounts of 1 are added to all whitelist
barcodes.
Similar to CellRanger 3.x.x
--soloStrand
default: Forward
string: strandedness of the solo libraries:
Unstranded
no strand information
Forward
read strand same as the original RNA molecule
Reverse
read strand opposite to the original RNA molecule
--soloFeatures
default: Gene
string(s): genomic features for which the UMI counts per Cell Barcode are
collected

Gene
genes: reads match the gene transcript
SJ
splice junctions: reported in SJ.out.tab
GeneFull
full genes: count all reads overlapping genes' exons and introns
--soloUMIdedup
default: 1MM_All
string(s): type of UMI deduplication (collapsing) algorithm
1MM_All
all UMIs with 1 mismatch distance to each other are collapsed (i.e.
counted once)
1MM_Directional
follows the "directional" method from the UMI-tools by Smith, Heger
and Sudbery (Genome Research 2017).
Exact
only exactly matching UMIs are collapsed
NoDedup
no deduplication of UMIs, count all reads. Allowed for --soloType
SmartSeq

--soloUMIfiltering
default: -
string(s) type of UMI ltering
-

basic ltering: remove UMIs with N and homopolymers (similar to
CellRanger 2.2.0)
MultiGeneUMI
remove lower-count UMIs that map to more than one gene
(introduced in CellRanger 3.x.x)

--soloOutFileNames
default: Solo.out/ features.tsv barcodes.tsv matrix.mtx
string(s) le names for STARsolo output:
le name prex gene names barcode sequences cell feature count matrix

--soloCellFilter
default: CellRanger2.2 3000 0.99 10

string(s): cell ltering type and parameters
CellRanger2.2
simple ltering of CellRanger 2.2, followed by three numbers: number
of expected cells, robust maximum percentile for UMI count,
maximum to minimum ratio for UMI count
TopCells
only report top cells by UMI count, followed by the exact number of
cells
None
do not output ltered cells

--soloOutFormatFeaturesGeneField3
default: "Gene Expression"
string(s): eld 3 in the Gene features.tsv le. If "-", then no 3rd eld is output.


转载请注明:周小钊的博客>>>单细胞实战(3):STAR分析单细胞数据

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352