条件变量:
条件变量本身不是锁!但它也可以造成线程阻塞。通常与互斥锁配合使用。给多线程提供一个会合的场所。为什么有锁了还要条件变量?
主要应用函数:
pthread_cond_init函数
pthread_cond_destroy函数
pthread_cond_wait函数
pthread_cond_timedwait函数
pthread_cond_signal函数
pthread_cond_broadcast函数
以上6 个函数的返回值都是:成功返回0, 失败直接返回错误号。
pthread_cond_t 类型 用于定义条件变量
pthread_cond_t cond;
pthread_cond_init函数
初始化一个条件变量
int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t *restrict attr);
参2:attr表条件变量属性,通常为默认值,传NULL即可
也可以使用静态初始化的方法,初始化条件变量:
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_cond_destroy函数
销毁一个条件变量
int pthread_cond_destroy(pthread_cond_t *cond);
pthread_cond_wait函数
阻塞等待一个条件变量
int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex);
函数作用:
- 阻塞等待条件变量cond(参1)满足
- 释放已掌握的互斥锁(解锁互斥量)相当于pthread_mutex_unlock(&mutex);
1. 2. 两步为一个原子操作。 - 当被唤醒,pthread_cond_wait函数返回时,解除阻塞并重新申请获取互斥锁pthread_mutex_lock(&mutex);
pthread_cond_timedwait函数
限时等待一个条件变量
int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime);
参3: 参看man sem_timedwait函数,查看struct timespec结构体。
struct timespec {
time_t tv_sec; /* seconds */ 秒
long tv_nsec; /* nanosecondes*/ 纳秒
}
形参abstime:绝对时间。
如:time(NULL)返回的就是绝对时间。而alarm(1)是相对时间,相对当前时间定时1秒钟。
struct timespec t = {1, 0};
pthread_cond_timedwait (&cond, &mutex, &t); 只能定时到 1970年1月1日 00:00:01秒(早已经过去)
正确用法:
time_t cur = time(NULL); 获取当前时间。
struct timespec t; 定义timespec 结构体变量t
t.tv_sec = cur+1; 定时1秒
pthread_cond_timedwait (&cond, &mutex, &t); 传参
参APUE.11.6线程同步条件变量小节
在讲解setitimer函数时我们还提到另外一种时间类型:
struct timeval {
time_t tv_sec; /* seconds */ 秒
suseconds_t tv_usec; /* microseconds */ 微秒
};
pthread_cond_signal函数
唤醒至少一个阻塞在条件变量上的线程
int pthread_cond_signal(pthread_cond_t *cond);
pthread_cond_broadcast函数
唤醒全部阻塞在条件变量上的线程
int pthread_cond_broadcast(pthread_cond_t *cond);
生产者消费者条件变量模型
线程同步典型的案例即为生产者消费者模型,而借助条件变量来实现这一模型,是比较常见的一种方法。假定有两个线程,一个模拟生产者行为,一个模拟消费者行为。两个线程同时操作一个共享资源(一般称之为汇聚),生产向其中添加产品,消费者从中消费掉产品。
看如下示例,使用条件变量模拟生产者、消费者问题:
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
struct msg {
struct msg *next;
int num;
};
struct msg *head;
pthread_cond_t has_product = PTHREAD_COND_INITIALIZER;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
void *consumer(void *p)
{
struct msg *mp;
for (;;)
{
pthread_mutex_lock(&lock);
while (head == NULL) //头指针为空,说明没有节点 可以为if吗
{
pthread_cond_wait(&has_product, &lock);
}
mp = head;
head = mp->next; //模拟消费掉一个产品
pthread_mutex_unlock(&lock);
printf("-Consume ---%d\n", mp->num);
free(mp);
sleep(rand() % 5);
}
}
void *producer(void *p)
{
struct msg *mp;
while (1)
{
mp = malloc(sizeof(struct msg));
mp->num = rand() % 1000 + 1; //模拟生产一个产品
printf("-Produce ---%d\n", mp->num);
pthread_mutex_lock(&lock);
mp->next = head;
head = mp;
pthread_mutex_unlock(&lock);
pthread_cond_signal(&has_product); //将等待在该条件变量上的一个线程唤醒
sleep(rand() % 5);
}
}
int main(int argc, char *argv[])
{
pthread_t pid, cid;
srand(time(NULL));
pthread_create(&pid, NULL, producer, NULL);
pthread_create(&cid, NULL, consumer, NULL);
pthread_join(pid, NULL);
pthread_join(cid, NULL);
return 0;
}
条件变量的优点:
相较于mutex而言,条件变量可以减少竞争。
如直接使用mutex,除了生产者、消费者之间要竞争互斥量以外,消费者之间也需要竞争互斥量,但如果汇聚(链表)中没有数据,消费者之间竞争互斥锁是无意义的。有了条件变量机制以后,只有生产者完成生产,才会引起消费者之间的竞争。提高了程序效率。
实例程序:【cond】
https://github.com/963375877/threadsynchronization