原文地址, 拒绝转载: https://www.jianshu.com/p/b2691cf186d4
Attribute Lookup
假设 Cls 是类,instance 是类 Cls 的一个实例,当调用 instance.attr 时,到底发生了什么呢?下面就来一一探讨属性访问的调用流程
1 descriptor
什么是 desciptor
, 官方文档给出的回答是
A descriptor is what we call any object that defines
__get__()
,__set__()
, or__delete__()
.
即包含了任意 __get__
或者 __set__
或者 __delete__
函数的方法的 object
都是 descriptor
2 data descriptor 与 non-data descriptors
If an object defines
__set__()
or__delete__()
, it is considered a data descriptor. Descriptors that only define__get__()
are called non-data descriptors (they are typically used for methods but other uses are possible).
如果一个 descriptor
只定义了 __get__
方法,那么就是 non-data descriptor
如果一个 object
定义了 __set__
或者 __delete__
方法,那么就是 data descriptor
class DataDescriptor:
"""
包含了 __set__ 方法,所以这个类的实例是 data-descritptor
"""
def __init__(self, init_value):
self.value = init_value
def __get__(self, instance, typ):
return 'DataDescriptor __get__' + str(typ)
def __set__(self, instance, value):
print ('DataDescriptor __set__')
self.value = value
class NonDataDescriptor:
"""
只定义了 __get__ 方法,所以这个类的实例是 non-data descriptor
"""
def __init__(self, init_value):
self.value = init_value
def __get__(self, instance, typ):
return'NonDataDescriptor __get__' + str(typ)
3 当调用 instance.attr 时,发生了什么
假设 cls
是类,instance
是类 cls
的一个实例,当调用 instance.attr
时,调用流程如下
-
如果在
cls
或者 其基类中的__dict__
找到了attr
,并且attr
是data descriptor
则调用其__get__
方法,即__dict__['attr'].__get(instance, cls)
class Base(object): dd_base = DataDescriptor(0) ndd_base = NonDataDescriptor(0) class Derive(Base): dd_derive = DataDescriptor(0) ndd_derive = NonDataDescriptor(0) ndd_derive2 = NonDataDescriptor(1) not_descriptor_in_class = "Derive not descriptor in class" def __getattr__(self, key): return '__getattr__ with key %s in Derive' % key print(Base.__dict__) """ { '__module__': '__main__', 'dd_base': <__main__.DataDescriptor object at 0x7fc5c5b68a58>, 'ndd_base': <__main__.NonDataDescriptor object at 0x7fc5c5b68a90>, '__dict__': <attribute '__dict__' of 'Base' objects>, '__weakref__': <attribute '__weakref__' of 'Base' objects>, '__doc__': None} """ print(Derive.__dict__) """ {'__module__': '__main__', 'dd_derive': <__main__.DataDescriptor object at 0x7f9e74ac79b0>, 'ndd_derive': <__main__.NonDataDescriptor object at 0x7f9e74ac79e8>, 'same_name_attr': 'attr in class', '__doc__': None} """ b = Base() # 打印: DataDescriptor __get__<class '__main__.Base'> print(b.dd_base) d = Derive() # 打印: DataDescriptor __get__<class '__main__.Derive'> print(d.dd_base) # 打印: DataDescriptor __get__<class '__main__.Derive'> print(d.dd_derive) # 即使我们更改了 instance 的 __dict__ 属性,访问时仍然从 data descriptor 中读取 # 不会从 instance.__dict__ 中读取 b.__dict__['dd_base'] = 'changed in dict dd base' # 打印: DataDescriptor __get__<class '__main__.Base'> print(b.dd_base) d.__dict__['dd_derive'] = 'changed in dict dd derive' # 打印: DataDescriptor __get__<class '__main__.Derive'> print(d.dd_derive)
-
如果
attr
出现在instance.__dict__
中,则返回instance.__dict__['attr']
。否则,执行下面的流程# 更改了 instance 的 __dict__ # 如果访问的不是 data descriptor, 则直接中 instance.__dict__ 中读取 attr b.__dict__['ndd_base'] = 'changed in dict ndd base' # 打印: changed in dict ndd base print(b.ndd_base) d.__dict__['ndd_derive'] = 'changed in dict ndd derive' # 打印: changed in dict ndd derive print(d.ndd_derive)
-
如果
attr
出现在类或者基类的__dict__
中-
如果是
non-data descriptor
, 则调用__get__
方法# 打印: NonDataDescriptor __get__<class '__main__.Derive'> print(d.ndd_derive2)
-
如果不是
descriptor
, 则返回__dict__['attr']
# 打印: Derive not descriptor in class print(d.not_descriptor_in_class)
-
-
如果仍未找到,如果类或者其基类有
__getattr__
方法,则调用__getattr__
方法# 打印: __getattr__ with key no_exist_key in Derive print(d.no_exist_key)
-
否则抛出
AttributeError
try: b.no_exists_key except Exception as e: # 打印: True print(isinstance(e, AttributeError))
4 完整测试代码
class DataDescriptor:
"""
包含了 __set__ 方法,所以这个类的实例是 data-descritptor
"""
def __init__(self, init_value):
self.value = init_value
def __get__(self, instance, typ):
return 'DataDescriptor __get__' + str(typ)
def __set__(self, instance, value):
print('DataDescriptor __set__')
self.value = value
class NonDataDescriptor:
"""
只定义了 __get__ 方法,所以这个类的实例是 non-data descriptor
"""
def __init__(self, init_value):
self.value = init_value
def __get__(self, instance, typ):
return 'NonDataDescriptor __get__' + str(typ)
class Base(object):
dd_base = DataDescriptor(0)
ndd_base = NonDataDescriptor(0)
class Derive(Base):
dd_derive = DataDescriptor(0)
ndd_derive = NonDataDescriptor(0)
ndd_derive2 = NonDataDescriptor(1)
not_descriptor_in_class = "Derive not descriptor in class"
def __getattr__(self, key):
return '__getattr__ with key %s in Derive' % key
if __name__ == '__main__':
b = Base()
# 打印: DataDescriptor __get__<class '__main__.Base'>
print(b.dd_base)
d = Derive()
# 打印: DataDescriptor __get__<class '__main__.Derive'>
print(d.dd_base)
# 打印: DataDescriptor __get__<class '__main__.Derive'>
print(d.dd_derive)
# 即使我们更改了 instance 的 __dict__ 属性,访问时仍然从 data descriptor 中读取
# 不会从 instance.__dict__ 中读取
b.__dict__['dd_base'] = 'changed in dict dd base'
# 打印: DataDescriptor __get__<class '__main__.Base'>
print(b.dd_base)
d.__dict__['dd_derive'] = 'changed in dict dd derive'
# 打印: DataDescriptor __get__<class '__main__.Derive'>
print(d.dd_derive)
# 更改了 instance 的 __dict__
# 如果访问的不是 data descriptor, 则直接中 instance.__dict__ 中读取 attr
b.__dict__['ndd_base'] = 'changed in dict ndd base'
# 打印: changed in dict ndd base
print(b.ndd_base)
d.__dict__['ndd_derive'] = 'changed in dict ndd derive'
# 打印: changed in dict ndd derive
print(d.ndd_derive)
# 打印: NonDataDescriptor __get__<class '__main__.Derive'>
print(d.ndd_derive2)
# 打印: Derive not descriptor in class
print(d.not_descriptor_in_class)
# 打印: __getattr__ with key no_exist_key
print(d.no_exist_key)
try:
b.no_exists_key
except Exception as e:
# 打印: True
print(isinstance(e, AttributeError))
5 参考链接
https://blog.peterlamut.com/2018/11/04/python-attribute-lookup-explained-in-detail/
https://docs.python.org/3/howto/descriptor.html
https://www.cnblogs.com/xybaby/p/6270551.html
6 转载一下调用流程图片
图片是从参考链接的第一个博客中复制的,把调用的流程描述的很清晰,值得一看