一、安装和加载R包
1、镜像设置
options()$repos
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源
有问题搜索“生信星球 你还在每次配置Rstudio的下载镜像吗?”
2、安装R包dplyr
R包安装命令是install.packages(“包”)
或者BiocManager::install(“包”)
。取决于你要安装的包存在于CRAN网站还是Biocductor
3、加载R包
library(包)
require(包)
3、R包安装加载三部曲
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)
二、dplyr五个基础函数
示例数据直接使用内置数据集iris的简化版:
test <- iris[c(1:2,51:52,101:102),]
1、mutate(),新增列
mutate(test, new = Sepal.Length * Sepal.Width)
2、select(),按列筛选
(1)按列号筛选
select(test,1)
select(test,c(1,5))
(2)按列名筛选
select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width") select(test, one_of(vars))
3、filter()筛选行
filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))
4、arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)
#默认从小到大排序
arrange(test, desc(Sepal.Length))
#用desc从大到小
5、summarise():汇总
summarise(test, mean(Sepal.Length), sd(Sepal.Length))
# 计算Sepal.Length的平均值和标准差
先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
三、dplyr两个实用技能
1、管道操作 %>% (cmd/ctr + shift + M)
test %>%
group_by(Species) %>%
summarise(mean(Sepal.Length), sd(Sepal.Length))
2、count统计某列的unique值
count(test,Species)
四、dplyr处理关系数据
示例数据,注意不能引入factor
options(stringsAsFactors = F)
test1 <- data.frame(x = c('b','e','f','x'),
z = c("A","B","C",'D'),
stringsAsFactors = F)
test1
test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6),
stringsAsFactors = F)
test2
1、內连inner_join,取交集
inner_join(test1, test2, by = "x")
2、左连left_join
left_join(test2, test1, by = 'x')
left_join(test2, test1, by = 'x')
3、全连full_join
4、半连接:返回能够与y表匹配的x表所有记录semi_join
semi_join(x = test1, y = test2, by = 'x')
5、反连接:返回无法与y表匹配的x表的所记录anti_join
anti_join(x = test2, y = test1, by = 'x')
6、简单合并
相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数(来源:微信公众号 生信星球)
test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40)) test1
test2 <- data.frame(x = c(5,6), y = c(50,60)) test2
test3 <- data.frame(z = c(100,200,300,400)) test3
bind_rows(test1, test2)
bind_cols(test1, test3)