R语言滴水穿石系列文章(一):dplyr-高效的数据变换与整理工具

1、背景简介

在数据分析工作中,经常需要对原始的数据集进行清洗、整理以及变换。常用的数据整理与变换工作主要包括:特定分析变量的选取、满足条件的数据记录的筛选、按某一个或几个变量排序、对原始变量进行加工处理并生成新的变量、对数据进行汇总以及分组汇总,比如计算各组的平均值等。

其实,上述的数据处理与变换工作在任何一种SQL语言(如Oracle,MySQL)中都非常容易处理,但是R语言作为一门编程语言,如何高效地完成上述类似SQL语言的数据处理功能?本文介绍的R语言dplyr包正是这方面工作的有力武器之一。

dplyr包是 Hadley Wickham (ggplot2包的作者,被称作“一个改变R的人”)的杰作, 并自称 a grammar of data manipulation, 他将原本plyr 包中的ddply()等函数进一步分离强化,专注接受dataframe对象, 大幅提高了速度, 并且提供了更稳健的与其它数据库对象间的接口。

本文试图对该dplyr包的一些基础且常用的功能做简要介绍。主要包括:

  1. 变量筛选函数 select
  2. 记录筛选函数 filter
  3. 排序函数 arrange
  4. 变形(计算)函数 mutate
  5. 汇总函数 summarize
  6. 分组函数 group_by
  7. 多步操作连接符 %>%
  8. 随机抽样函数 sample_n,sample_frac
001.png

2、dplyr包使用介绍

2.1 dplyr包的安装加载与示例数据准备

安装dplyr包。

install.packages("dplyr")
library(dplyr)

安装hflights包,该软件包中的飞机航班数据将用于本文中dplyr包各个函数的演示。

install.packages("hflights")
library(hflights)

通过以下代码,简单了解示例数据集hflights

class(hflights);dim(hflights)
head(hflights)

输出结果如下:
hflights是一个data.frame类型的对象,包含227496条数据记录、21个变量,head函数展示了前6条数据记录。

03.png

在利用dplyr包处理数据之前,需要将数据装载成dplyr包的一个特定对象类型(data frame tbl / tbl_df),也称作 tibble 类型,可以用 tbl_df函数将数据框类型的数据装载成 tibble 类型的数据对象。

packageVersion("dplyr")
tbl_hflights<-tbl_df(hflights)
class(tbl_hflights)
tbl_hflights

输出结果如下:可以看到,将hflights转换成tbl_df类型后,R语言打印数据集tbl_hflights的数据时,仅打印了适合屏幕宽度的数据,屏幕显示不下的剩余两个变量的数据(CancellationCode , Diverted )并没有打印出来,这使得屏幕上打印出来的数据可读性更强,也更美观。此外,还在每一列变量名称的下面显示了变量的类型。

04.png

==p.s. 可以用packageVersion函数查看dplyr包的版本==

2.2 变量筛选select

select函数可以通过指定列名选择指定的变量进行分析。

# 选择制定的变量
select(tbl_hflights,Year,Month,DayofMonth,FlightNum,Distance)
# 用类似于生成数字序列的方式选择变量
# 选择Year开始一直到ArrTime结束的所有变量
3:10
select(tbl_hflights,Year:ArrTime)
# 也可以按照倒过来的顺序选择
select(tbl_hflights,ArrTime:Year)
# 除了选择变量,也可以删除指定的变量
select(tbl_hflights,-Year,-Month,-DayofMonth,-FlightNum,-Distance)
select(tbl_hflights,-(Year:ArrTime))
05.png

06.png

07.png

08.png

09.png

2.3 数据记录筛选filter

filter函数按照指定的条件筛选符合条件中逻辑判断要求的数据记录,类似于SQL语句中的where语句中的筛选条件。

# 选择2011年1月而且起飞时间为1400的所有数据记录
filter(tbl_hflights,Year == 2011, Month == 1, DepTime == 1400)
# '且'的关系也可以用&符号表示,也就是列出的所有条件同时满足
filter(tbl_hflights,Year == 2011 & Month == 1 & DepTime == 1400)
# 选择起飞时间在1400之前的航班
filter(tbl_hflights,Year == 2011 & Month == 1 & DepTime <= 1400)
# '或'的关系用|符号表示。选择起飞时间为1400或者1430的航班,且UniqueCarrier为'AA'
filter(tbl_hflights,Year == 2011 & Month == 1 & (DepTime == 1400 | DepTime == 1430) & UniqueCarrier == 'AA')

上述R语句输出结果如下:


10.png

11.png

12.png

13.png

2.4 数据排序arrange

arrange函数按给定的列名进行排序,默认为升序排列,也可以对列名加desc()进行降序排序。

tbl_hflights1<-select(filter(tbl_hflights,Year == 2011 & Month == 1 & DepTime == 1400),Year:ArrTime,AirTime)
# 将数据按照ArrTime升序排序
arrange(tbl_hflights1,ArrTime)
# 将数据先按照AirTime降序,再按照ArrTime升序排列
arrange(tbl_hflights1,desc(AirTime),ArrTime)

上述R语句输出结果如下:

14.png

15.png

2.5 变量变换/重构mutate

mutate函数可以基于原始变量重新计算得到新的变量,在做数据分析预处理的时候经常会用到该功能。

# 由ArrTime-DepTime得到航班的飞行所用时长,并存储在DurTime变量中
# 飞行所用时长(单位:分钟)的计算方式为:小时数*60+分钟数
# 同时将飞行的分钟数,换算成秒。
# 优势在于可以在同一语句中对刚增加的列进行操作。
tbl_hflights2<-mutate(tbl_hflights1,
                      DurTime = (as.numeric(substr(ArrTime,1,2)) - as.numeric(substr(DepTime,1,2)))*60 + as.numeric(substr(ArrTime,3,4)) ,
                      Dur_Time1 = DurTime * 60)
tbl_hflights2

上述R语句输出结果如下:

16.png

2.6 数据汇总summarize

summarize函数实现对数据的汇总,比如求和、计算平均值等。

# 计算航班平均飞行时长
summarize(tbl_hflights2,avg_dur = mean(DurTime),sum_air = sum(AirTime))

上述R语句输出结果如下:


18.png

2.7 数据分组group_by

group_by函数实现对数据进行分组,结合summarize函数,可以对分组数据进行汇总统计。

# 按照航空公司分组进行汇总
summarise(group_by(tbl_hflights, UniqueCarrier), 
          m = mean(AirTime,na.rm = TRUE), 
          sd = sd(AirTime,na.rm = TRUE), 
          cnt = n(), 
          me = median(AirTime,na.rm = TRUE))

上述R语句输出结果如下:

19.png

2.8 多步操作连接符%>%

dplyr包里还新引进了一个操作符,%>%, 使用时把数据集名作为开头, 然后依次对此数据进行多步操作。
这种运算符的编写方式使得编程者可以按数据处理时的思路写代码, 一步一步操作不断叠加,在程序上就可以非常清晰的体现数据处理的步骤与背后的逻辑。

# 对数据进行分布处理:分组-汇总-排序-打印
tbl_hflights %>%
  group_by(UniqueCarrier) %>%
  summarize(m = mean(AirTime,na.rm = TRUE), sd = sd(AirTime,na.rm = TRUE)) %>%
  arrange(desc(m),sd) %>%
  head(10)

上述R语句输出结果如下:

20.png

2.9 挑选随机样本sample_n, sample_frac

sample_n随机选出指定个数(样本容量)的样本数;sample_frac随机选出指定百分比(占整个数据集总体百分比)的样本数。

# 随机抽取10个样本
sample_n(tbl_hflights,10)
# 随机抽取10%的样本
tbl_hflights %>% 
  sample_frac(0.1) %>%
  select(Year:UniqueCarrier) %>%
  group_by(UniqueCarrier) %>%
  summarize(m = mean(ArrTime,na.rm = TRUE), cnt = n()) %>%
  arrange(desc(m))

上述R语句输出结果如下:

21.png

22.png

3、参考文献与其他学习资料

3.1 dplyr包中自带的参考资料查看

可以通过如下名称查看dplyr包中自带的参考资料。

# 查看自带的参考资料
vignette(package = "dplyr")
vignette("introduction", package = "dplyr")
23.png
24.png

3.2 本文写作用到的参考链接

R语言扩展包dplyr笔记
R语言扩展包dplyr——数据清洗和整理

3.3 RStudio官网的cheatsheet

data-wrangling-cheatsheet

26.png
25.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容