Pandas系列1-DataFrame之初始化

DataFrame有多种初始化方法,主要分为以下几种情况:

  • 通过Object初始化
  • 通过文件初始化
  • 通过SQL查询结果初始化
  • 通过NoSQL数据库查询结果初始化

下面分别介绍:

通过object初始化

这又分为以下几种方式

  • Dict of 1D ndarrays, lists, dicts, or Series
  • 2-D numpy.ndarray
  • Structured or record ndarray
  • A Series
  • Another DataFrame

总的来说,如果容器对象是一个list,那么其中的item就是一条行记录,而如果是dict,那么就相当于列记录,即key对应的是column name,而values即为这一列的值,而values一般可以通过list存储,也可以通过Series对象存储。

通过list

通过1D data series初始化的时候,如果有多列,那么需要等长

# columns参数是通过一个list参数来指定column labels
df = pd.DataFrame([['a1', 1], ['a2', 4]], columns=['uid', 'score'])
In [477]: df
Out[477]:
  uid  score
0  a1      1
1  a2      4

通过Dict of 1D ndarray

In [298]: df = pd.DataFrame({'col1': np.arange(3), 'col2': np.arange(5, 8)})

In [299]: df
Out[299]:
   col1  col2
0     0     5
1     1     6
2     2     7

通过Dict of lists

In [294]: df = pd.DataFrame({'col1': [1, 2, 3, 4], 'col2': ['a', 'b', 'c', 'd']})

In [295]: df
Out[295]:
   col1 col2
0     1    a
1     2    b
2     3    c
3     4    d

通过list of dicts

注意与上边的dict of lists区分,如果最外层是dict,那么key值默认是column label。
而在list of dicts中,每个dict都是一个record,或者说一行

# 可以不等长,缺失值自动设为NaN
In [49]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]

In [50]: pd.DataFrame(data2)
Out[50]: 
   a   b     c
0  1   2   NaN
1  5  10  20.0

In [51]: pd.DataFrame(data2, index=['first', 'second'])
Out[51]: 
        a   b     c
first   1   2   NaN
second  5  10  20.0

In [52]: pd.DataFrame(data2, columns=['a', 'b'])
Out[52]: 
   a   b
0  1   2
1  5  10

通过Dict of Series

In [314]: s = pd.Series(range(5))

In [315]: s
Out[315]:
0    0
1    1
2    2
3    3
4    4
dtype: int64

In [316]: p = pd.Series(range(8, 13))

In [317]: p
Out[317]:
0     8
1     9
2    10
3    11
4    12
dtype: int64

In [318]: df = pd.DataFrame({'a': s, 'b': p})

In [319]: df
Out[319]:
   a   b
0  0   8
1  1   9
2  2  10
3  3  11
4  4  12

通过2-D numpy.ndarray

In [289]: df = pd.DataFrame(np.arange(16).reshape((4,4)), columns=['one', 'two', 'three',
     ...:  'four'], index=['a', 'b', 'c','d'])

In [290]: df
Out[290]:
   one  two  three  four
a    0    1      2     3
b    4    5      6     7
c    8    9     10    11
d   12   13     14    15

通过文件初始化

pandas通过各种数据文件也可以初始化,比如csv文件,excel文件,json文件,html文件等,详见下图


IO Tools

下面以read_csv详细解释下读取csv文件以及初始化的过程
read_csv的完整文档参考read_csv api,下面通过示例对常用的parameter进行解释:

csv_path = "./test.csv"
columns = ['id', 'name', 'age']
dtype = {'id': int, 'name': object, 'age': int}
pd.read_csv(csv_path, header=None, names=columns, dtype=dtype)
  • filepath_or_buffer, 这个是最基本的参数,用以指明文件的路径(路径可以是字符串,也可以是各种path对象,详见文档)或者文件对象(也可以接收类文件对象, 即提供read method, 如StringIO对象)。另外,这个参数也可以是一个URL,而这个URL可以http, ftp, 或者s3的url.

对于没有权限限制的url,直接使用read_csv可以大大简化代码,但是通常我们的数据不会放置到公开的url地址上,因此这就涉及权限的问题,通常还是通过其它手段将文件下载到本地后再读取。

  • header, 这个参数用于设置第几行为column names, 默认是'infer',即Pandas会自动推断哪一行是column names。当文件中没有column names时,相当于设定header=0。很多时候想要忽略原始的column names而自己设定column names,那么可以将这个参数设置为None, 然后通过names参数来设定column names
  • names, 用于设定column names
  • dtype, 用于设定每一列对应的数据类型,需要注意的是对string类型需要设置为object
  • nrows, 要读取多少行,通过这个参数我们可以部分读取文件
  • usecols, 用于选定列,即指定哪些列load进DataFrame中,通过这个参数可以只读取我们需要的数据,从而减少内存占用,加快load速度。

通过SQL查询结果初始化

import pandas.io.sql as sql

# conn是数据库的连接对象
sql.read_frame('select * from test', conn)

NoSQL查询结果初始化

这里以MongoDB为例

# 从MongoDB中查询年龄大于20岁的用户,查询返回一个cursor对象
user_results = user.find({"age": {"$gt": 20}})

# 将cursor对象转化为list,然后初始化
# columns可以用于选取相应的field的数据,只有在这个列表中的field才会被load进DataFrame对象当中,如果没有对应的数据,会被填入NaN
df = pd.DataFrame(list(user_results), columns=['id', 'age', 'name']

这里需要注意的是如果不指定columns参数,有可能导致某些为空的field没有对应的列,如果指定了列名称,则如果相对应的域没有数据的话,就会自动置为nan

References

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容