基于FasterRCNN深度学习网络的车辆检测算法matlab仿真

1.算法运行效果图预览


Tttttttttttttt123




2.算法运行软件版本

MATLAB2022A


3.算法理论概述

       车辆检测是计算机视觉和人工智能领域的重要研究方向,它在交通管理、智能驾驶和安防等领域具有广泛的应用。Faster R-CNN是一种常用的目标检测算法,结合了深度学习和区域建议技术,能够高效地检测出图像中的车辆目标。


1、数学原理:

      Faster R-CNN是一种基于深度学习的目标检测算法,由Ross Girshick等人在2015年提出。它的核心思想是引入区域建议网络(Region Proposal Network,RPN)来生成候选区域,并结合Fast R-CNN来进行目标分类和边界框回归。通过端到端的训练,Faster R-CNN能够在一张图像中高效地检测出多个不同类别的目标。


RPN网络:

       RPN是Faster R-CNN的核心组件之一,用于生成候选区域(Region Proposal)。RPN通过滑动窗口在特征图上提取多个不同尺度的锚框(Anchor),对每个锚框进行分类和回归预测。其中,分类预测用于判断锚框是否含有目标,回归预测用于修正锚框的位置,使其更准确地覆盖目标。RPN的数学原理可以描述为:


输入:特征图F,其中每个像素点对应于原始图像的一个区域。

输出:每个锚框的分类得分(是否含有目标)和位置调整量。

具体来说,对于每个锚框i,RPN将特征图F中的对应区域作为输入,通过两个全连接层(一个用于分类,一个用于回归)得到分类得分p_i和位置调整量t_i:

p_i = P_cls(F_i)

t_i = P_reg(F_i)


其中,P_cls和P_reg分别是分类和回归的全连接层,F_i是特征图中对应锚框i的区域。


Fast R-CNN分类和回归:

      在RPN生成的候选区域基础上,Faster R-CNN引入Fast R-CNN网络来进行目标的最终分类和边界框回归。

      Fast R-CNN的数学原理与Faster R-CNN之前的版本相同,可以表示为:


输入:候选区域R_i,对应于原始图像的一个目标区域。

输出:目标类别的分类概率p_i和边界框回归的位置调整量t_i。

具体来说,Fast R-CNN将候选区域R_i作为输入,通过多个卷积和全连接层提取特征,并在最后的全连接层上得到分类概率p_i和位置调整量t_i:

p_i = P_cls(R_i)

t_i = P_reg(R_i)


其中,P_cls和P_reg分别是分类和回归的全连接层。


2、实现过程:

       基于Faster R-CNN深度学习网络的车辆检测算法的实现过程主要包括以下几个步骤:数据准备、网络构建、训练和测试。下面将详细介绍每个步骤:


数据准备:

      首先,需要准备车辆检测的训练数据和测试数据。训练数据包括带有标签的图像样本,标签中包含每个目标的类别和边界框信息。测试数据是用于评估算法性能的图像样本,不需要标签信息。


网络构建:

      构建Faster R-CNN网络,包括RPN网络和Fast R-CNN网络。在MATLAB中,可以使用Deep Learning Toolbox提供的函数来构建网络,例如imageInputLayer、convolution2dLayer、fullyConnectedLayer等。


      在构建RPN网络时,通常采用VGG16或ResNet等预训练的卷积神经网络作为特征提取器,然后在其基础上添加RPN层和全连接层。


训练:

     使用准备好的训练数据对Faster R-CNN网络进行训练。在训练过程中,通过计算分类损失和回归损失来更新网络参数,使得网络能够准确地检测出车辆目标。

可以使用MATLAB的trainFasterRCNNObjectDetector函数来进行训练,该函数将训练图像、标签和网络结构作为输入,同时可以设置训练参数,例如学习率、迭代次数等。


测试:

      使用准备好的测试数据对训练好的Faster R-CNN网络进行测试。通过将测试图像输入到网络中,获取每个目标的类别和边界框信息。然后可以将检测结果与真实标签进行比较,评估算法的性能。MATLAB中可以使用detect函数对图像进行目标检测,输出每个目标的边界框和得分。



4.部分核心程序

% 训练Faster R-CNN目标检测器

[detector, info] =trainFasterRCNNObjectDetector(trainingData,lgraph,options,'NegativeOverlapRange',[00.3],'PositiveOverlapRange',[0.6 1]);

% 在测试集上进行检测

figure;

for i = 1:12

    i

   subplot(3,4,i);   

   I               =imread(test_Tbl0.imageFilename{i});

   I               =imresize(I,In_layer_Size(1:2));

   [bboxes,scores] = detect(detector,I);


   if isempty(bboxes)==0

   I1              =insertObjectAnnotation(I,'rectangle',bboxes,scores);

   else

   I1              = I;

   end

   imshow(I1)

end

% 绘制精度-召回曲线并显示AP值

figure

plot(recall,precision,'-r>',...

   'LineWidth',1,...

   'MarkerSize',6,...

   'MarkerEdgeColor','k',...

   'MarkerFaceColor',[0.9,0.9,0.0]);

xlabel('Recall')

ylabel('Precision')

grid on

title(sprintf('识别率= %.2f', ap))

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容