Python是如何实现内存管理的?

点评:当面试官问到这个问题的时候,一个展示自己的机会就摆在面前了。你要先反问面试官:“你说的是官方的CPython解释器吗?”。这个反问可以展示出你了解过Python解释器的不同的实现版本,而且你也知道面试官想问的是CPython。当然,很多面试官对不同的Python解释器底层实现到底有什么差别也没有概念。所以,千万不要觉得面试官一定比你强,怀揣着这份自信可以让你更好的完成面试。

Python提供了自动化的内存管理,也就是说内存空间的分配与释放都是由Python解释器在运行时自动进行的,自动管理内存功能极大的减轻程序员的工作负担,也能够帮助程序员在一定程度上解决内存泄露的问题。以CPython解释器为例,它的内存管理有三个关键点:引用计数、标记清理、分代收集。

引用计数:对于CPython解释器来说,Python中的每一个对象其实就是PyObject结构体,它的内部有一个名为ob_refcnt 的引用计数器成员变量。程序在运行的过程中ob_refcnt的值会被更新并藉此来反映引用有多少个变量引用到该对象。当对象的引用计数值为0时,它的内存就会被释放掉。

typedef struct _object {
_PyObject_HEAD_EXTRA
Py_ssize_t ob_refcnt;
struct _typeobject *ob_type;
} PyObject;

以下情况会导致引用计数加1:
对象被创建
对象被引用
对象作为参数传入到一个函数中
对象作为元素存储到一个容器中

以下情况会导致引用计数减1:
用del语句显示删除对象引用
对象引用被重新赋值其他对象
一个对象离开它所在的作用域
持有该对象的容器自身被销毁
持有该对象的容器删除该对象

可以通过sys模块的getrefcount函数来获得对象的引用计数。引用计数的内存管理方式在遇到循环引用的时候就会出现致命伤,因此需要其他的垃圾回收算法对其进行补充。

标记清理:CPython使用了“标记-清理”(Mark and Sweep)算法解决容器类型可能产生的循环引用问题。
该算法在垃圾回收时分为两个阶段:标记阶段,遍历所有的对象,如果对象是可达的(被其他对象引用),那么就标记该对象为可达;清除阶段,再次遍历对象,如果发现某个对象没有标记为可达,则就将其回收。
CPython底层维护了两个双端链表,一个链表存放着需要被扫描的容器对象(姑且称之为链表A),另一个链表存放着临时不可达对象(姑且称之为链表B)。为了实现“标记-清理”算法,链表中的每个节点除了有记录当前引用计数的ref_count变量外,还有一个gc_ref变量,这个gc_ref是ref_count的一个副本,所以初始值为ref_count的大小。执行垃圾回收时,首先遍历链表A中的节点,并且将当前对象所引用的所有对象的gc_ref减1,这一步主要作用是解除循环引用对引用计数的影响。再次遍历链表A中的节点,如果节点的gc_ref值为0,那么这个对象就被标记为“暂时不可达”(GC_TENTATIVELY_UNREACHABLE)并被移动到链表B中;如果节点的gc_ref不为0,那么这个对象就会被标记为“可达“(GC_REACHABLE),对于”可达“对象,还要递归的将该节点可以到达的节点标记为”可达“;链表B中被标记为”可达“的节点要重新放回到链表A中。在两次遍历之后,链表B中的节点就是需要释放内存的节点。

分代回收:在循环引用对象的回收中,整个应用程序会被暂停,为了减少应用程序暂停的时间,Python 通过分代回收(空间换时间)的方法提高垃圾回收效率。分代回收的基本思想是:对象存在的时间越长,是垃圾的可能性就越小,应该尽量不对这样的对象进行垃圾回收。CPython将对象分为三种世代分别记为0、1、2,每一个新生对象都在第0代中,如果该对象在一轮垃圾回收扫描中存活下来,那么它将被移到第1代中,存在于第1代的对象将较少的被垃圾回收扫描到;如果在对第1代进行垃圾回收扫描时,这个对象又存活下来,那么它将被移至第2代中,在那里它被垃圾回收扫描的次数将会更少。分代回收扫描的门限值可以通过gc模块的get_threshold函数来获得,该函数返回一个三元组,分别表示多少次内存分配操作后会执行0代垃圾回收,多少次0代垃圾回收后会执行1代垃圾回收,多少次1代垃圾回收后会执行2代垃圾回收。需要说明的是,如果执行一次2代垃圾回收,那么比它年轻的代都要执行垃圾回收。如果想修改这几个门限值,可以通过gc模块的set_threshold函数来做到。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容