【keras进行情感极性分析】实验中的问题及解决

Q:怎么看loss和acc的变化(loss几回合就不变了怎么办?)

(转自http://blog.csdn.net/SMF0504/article/details/71698354

  • train loss 不断下降,test loss不断下降,说明网络仍在学习;
  • train loss 不断下降,test loss趋于不变,说明网络过拟合;
  • train loss 趋于不变,test loss不断下降,说明数据集100%有问题;
  • train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;
  • train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。

Q:训练过程中loss数值为负数?

【原因】输入的训练数据没有归一化造成
【解决方法】把输入数值通过下面的函数过滤一遍,进行归一化

def data_in_one(inputdata):  
    inputdata = (inputdata-inputdata.min())/(inputdata.max()-inputdata.min())  
    return inputdata  

Q:如何让训练过程可视化

import keras  
from keras.utils import np_utils  
import matplotlib.pyplot as plt  
%matplotlib inline  

#写一个LossHistory类,保存loss和acc  
class LossHistory(keras.callbacks.Callback):  
    def on_train_begin(self, logs={}):  
        self.losses = {'batch':[], 'epoch':[]}  
        self.accuracy = {'batch':[], 'epoch':[]}  
        self.val_loss = {'batch':[], 'epoch':[]}  
        self.val_acc = {'batch':[], 'epoch':[]}  

    def on_batch_end(self, batch, logs={}):  
        self.losses['batch'].append(logs.get('loss'))  
        self.accuracy['batch'].append(logs.get('acc'))  
        self.val_loss['batch'].append(logs.get('val_loss'))  
        self.val_acc['batch'].append(logs.get('val_acc'))  

    def on_epoch_end(self, batch, logs={}):  
        self.losses['epoch'].append(logs.get('loss'))  
        self.accuracy['epoch'].append(logs.get('acc'))  
        self.val_loss['epoch'].append(logs.get('val_loss'))  
        self.val_acc['epoch'].append(logs.get('val_acc'))  

    def loss_plot(self, loss_type):  
        iters = range(len(self.losses[loss_type]))  
        plt.figure()  
        # acc  
        plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')  
        # loss  
        plt.plot(iters, self.losses[loss_type], 'g', label='train loss')  
        if loss_type == 'epoch':  
            # val_acc  
            plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')  
            # val_loss  
            plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')  
        plt.grid(True)  
        plt.xlabel(loss_type)  
        plt.ylabel('acc-loss')  
        plt.legend(loc="upper right")  
        plt.show()  

在模型中,model语句前加上:

history = LossHistory() 

然后在model.fit里加上callbacks = {history},以及下面调用history

model.fit(x, y, batch_size=32, nb_epoch=20,validation_data = (xt,yt),validation_steps=None,callbacks=[history])   
history.loss_plot('epoch')  

结果如下:


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容