FRCNN box回归为什么采用smooth L1 loss

对于边框的预测是一个回归问题。通常可以选择平方损失函数(L2损失)$f(x)=x^2$。但这个损失对于比较大的误差的惩罚很高。我们可以采用稍微缓和一点绝对损失函数(L1损失)$f(x)=|x|$,它是随着误差线性增长,而不是平方增长。

但这个函数在0点处导数不唯一,因此可能会影响收敛。一个通常的解决办法是在0点附近使用平方函数使得它更加平滑。它被称之为平滑L1损失函数。它通过一个参数$\sigma$来控制平滑的区域:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容