# -*- coding: utf-8 -*-
import tensorflow as tf
import os
import pandas as pd
#超参数
INPUT_NODE = 784
OUTPUT_NODE = 10
IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10
#第一层
CONV1_DEEP = 32
CONV1_SIZE = 5
# 第二层
CONV2_DEEP = 64
CONV2_SIZE = 5
# FC
FC_SIZE = 512
#CNN 前向传播
def inference(input_tensor, train, regularizer):
#卷积层1 28*28*1 -> 28*28*32
with tf.variable_scope('layer1-conv1'): #5*5*32过滤器
conv1_weights = tf.get_variable("weight",
[CONV1_SIZE, CONV1_SIZE, NUM_LABELS, CONV1_DEEP],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_bias = tf.get_variable("bias", [CONV1_DEEP],
initializer=tf.constant_initializer(0.0))
#strides步长为1, padding全0填充
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1,1,1,1], padding = 'SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
#池化层1 28*28*32 -> 14*14*32
#name_scope 是给op_name加前缀, variable_scope是给get_variable()创建的变量的名字加前缀。
with tf.name_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1, ksize=[1,2,2,1], strides=[1,2,2,1], padding = 'SAME')
#卷积层2 14*14*32 -> 14*14*64
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.get_variable("weight",
[CONV2_SIZE, CONV2_SIZE, NUM_LABELS, CONV2_DEEP],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_bias = tf.get_variable("bias", [CONV2_DEEP],
initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1,1,1,1], padding = 'SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
#池化层2 14*14*64 -> 7*7*64
with tf.name_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2, ksize=[1,2,2,1], strides=[1,2,2,1], padding = 'SAME')
##输入FC前reshape shape为 batch_size*7*7*64 pool_shape[0]为batch_size
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
#FC1 49*64拉直, 用dropout避免过拟合
with tf.variable_scope("layer5-fc1"):
fc1_weights = tf.get_variable("weight",
[nodes, FC_SIZE], initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
#可以认为这里的regularizer是个函数指针
tf.add_to_collection('losses', regularizer(fc1_weights))
fc1_bias = tf.get_variable("bias", [FC_SIZE], tf.constant_initializer(0.0))
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_bias)
if train:
fc1 = tf.nn.dropout(fc1, 0.5) #dropout一般只在fc层使用
with tf.variable_scope("layer6-fc2"):
fc2_weights = tf.get_variable("weight",
[FC_SIZE, NUM_LABELS], initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
#可以认为这里的regularizer是个函数指针
tf.add_to_collection('losses', regularizer(fc2_weights))
fc2_bias = tf.get_variable("bias", [NUM_LABELS], tf.constant_initializer(0.0))
logit = tf.matmul(fc1, fc2_weights) + fc2_bias
return logit
REGULARAZTION_RATE = 0.0001
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 #滑动平均, 减少过拟合
BATCH_SIZE = 100
MODEL_SAVE_PATH = "D:/kaggle/"
MODEL_NAME = "model.ckpt"
def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name = 'x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name= 'y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
y = inference(x, True, regularizer)
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
def main(argv=None):
mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
train(mnist)
if __name__ == '__main__':
tf.app.run()
CNN
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- R-CNN:2014年Fast R-CNN:2015年4月Faster R-CNN:2015年6月Mask R-C...
- RCNN 过程 1.利用sleactive search提取出图片中大约2000个候选区域2.将候选区域的的大小利...
- RCNN1. 在图像中确定约1000-2000个候选框 (使用选择性搜索)2. 每个候选框内图像块缩放至相同...
- R-CNN, Fast R-CNN, Faster R-CNN 今年四月份的时候,在一个研究院实习时学习了RCNN...
- 一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD https://m...