增长黑客进阶之路:关于A/A测试,看这篇文章就够了

增长黑客成长之路上,想必大家对A/B测试已经很熟悉了,但听过、实践过A/A测试的同学举个手我看看,喏,还没多少人。这篇文章我们就来讲讲A/A测试。

什么是A/A测试?

A/A测试可以理解成对两个相同版本进行的A/B测试。通常,这样做的目的是为了验证正在使用的工具运行试验在统计上是公平的。在A/A测试中,如果测试正确进行,控制组和实验组应该没有任何区别。

在没做A/A测试之前,你可能什么都不知道,这里的逻辑是这样的:如果样本的A/A测试结果达到统计显著,那么A/B测试工具或测试方案就是不可信的。

如果说A/B测试用来测试比较几个方案的优劣,那么A/A测试就是验证A/B测试及工具置信度的有效方式。

为什么进行A/A测试?

既然A/A测试的两个版本变量没有任何变化,为什么还要花时间精力来做?

商业活动中,通常我们使用一切数据工具的目的,无外乎:用测量推动决策优化,同时用正确的决策获取比竞争对手更大的市场。可能通过数据能获取的决策信息点有很多,那么通过A/A测试来确保你得到的数据能用来自信地作出决定,减小决策失误。

通常情况下我们做A/A测试的目的有下面几个:

1.保证精确的流量分配,换句话说,验证随机性实际上是通过确保每次试验产生的计数与统计范围相似

2.识别假阳性结果的频率(假阳性结果也可以理解为测试结果中的虚假繁荣,有相当的误导性)

3.确定方差“泡沫”帮我们更好的理解其他测试结果

关于假阳性

A/A测试能被用来理解假阳性结果的频率。简单讲,如果你在测试中采用95%置信水平,那么20次结果可能会出现1次假阳性结果。这时候通过A/A测试,就能验证转化率的显著差异,比如,你运行20次A/A测试,其中有2次结果明显不同,这意味着假阳性的比例可能高于5%。

方差“泡沫”

A/A测试能帮助确定转化率中的方差“泡沫”,最小化对未来测试的影响。除了技术上的有效性,A/A测试能让“泡沫”在可接受范围内。

比如,如果A/A测试中的泡沫是0.1%,测试转化率是3%,那么你可以接受的范围就是2.9%-3.1%。如果你看到0.1%的提升,那么你就知道这样的结果是没有意义的。

A/A测试的时候你不知道什么时候新变量和默认变量的转化率差别结果能达到统计显著,因此,A/A测试中的任何错误或置信度不应被用来作为未来测试的基准,因为A/A测试中本不应有转化率的明显差异。

需要注意的是,有可能只是因为随机性,导致A/A测试的两个试验结果有所不同,而不是工具或测试方案本身的问题。当然,随着样本量的增大,这种差别会逐渐降低。这是因为,小样本下的结果是不可信的,小样本从总体上意味着可能存在分配不均的数据段。要消除这点,就需要A/A测试运行足够长的时间,以及有足够的样本规模。

计算测试持续时间

测试持续时间是两个因素的函数:

1.达到一个可接受的样本大小所需的时间

2.变量之间的不同表现差异大小

如果一个变量引起了50%的变化,测试就不必运行很长时间。这种情况,即使是在小样本下,也可以忽略统计误差。

如何设置A/A测试

A/A测试好在不必做任何创造性的或研发上的工作。当设置A/B测试时,你需要在A/B测试软件上编程来改变、隐藏或删除页面的某些部分,对A/A测试来说这些都是不需要的。

A/A测试面临的挑战是正确的选择运行测试的页面,通常做A/A测试的页面都应该有两个特点:

1)相对较高的流量。网页流量越多,越早看到变量的对比。

2)访客可以从页面购买或注册。我们希望根据最终目标来校验我们的A/B测试工具。

出于这些原因,通常我们会在网站主页上运行A/A测试。

运行A/A测试的成本

运行A/A测试的唯一成本:机会成本。有的人宁愿把A/A测试上投入的时间和流量用来多做几次A/B测试也不是没有道理的。

应该考虑运行A/A测试的唯一种情况:

1.你刚安装了一个新的测试工具或更改了测试工具设置。

2.你发现了A/B测试与数据分析工具结果之间存在差异。



本文由 Zoran @吆喝科技(微信:appadhoc)编译,转载请联系吆喝科技。

参考文章:

blog.analytics-toolkit.com/2014/aa-aab-aabb-tests-cro/

blogs.oracle.com/marketingcloud/optimization-shorts:-aa-testing

www.optimizely.com/optimization-glossary/aa-testing/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,646评论 18 139
  • 你也是个乳臭未干的成年人吗 文集 余生很长,你听我讲
    太宰不治阅读 207评论 0 1
  • 其实我知道,好多人,好多平台,都说多读书,多读书,多读书,我心里也是接受的,理由无非也就那些,增长见识,学到更多...
    何水先生阅读 255评论 0 1
  • 彭小六“梦想领读会”作业·彭小六早读会日报(2017-05-15) 作者:BigQ个人成长 小六“梦想领读会”作业...
    BigQ个人成长阅读 549评论 0 51