JAVA垃圾回收机制(GC)

什么是垃圾回收

垃圾回收GC(Garbage Collection)是Java的核心技术之一, 垃圾收集的目的在于清楚不在使用的对象, 来释放内存空间.

怎么回收

GC通过确定对象是否被活动对象引用来确定是否改对象能否被回收. 常用的判断方式是引用计数对象引用遍历

引用计数

引用计数是垃圾收集器中的早期策略, 在这种方法中, 堆中每个对象(对象主体, 而非对象引用)都有一个引用计数, 当一个对象的引用计数为0时, 他就可以被当做垃圾而被收集. 引用计数的变化规则如下 :

  • 当一个对象被创建, 且将该对象分配给一个变量时, 该对象的引用计数置为1.
  • 当其他变量被赋值为这个对象的引用时, 该对象引用计数加1
  • 但当一个对象的某个引用超过了生命周期或者被设置为一个新值时,该对象的引用计数减1
  • 当一个对象被垃圾收集时,它所引用的任何对象计数减1.

优点:引用计数收集器可以很快的执行,交织在程序运行中。对程序不被长时间打断的实时环境比较有利。
缺点: 无法检测出循环引用。如父对象有一个对子对象的引用,子对象反过来引用父对象。这样,他们的引用计数永远不可能为0.

对象引用遍历

早期的JVM使用引用计数,现在JVM大多采用对象引用遍历。对象引用遍历从一组对象开始,沿着整个对象图上的每条链接,递归确定可到达(reachable)的对象。如果某对象不能从这些根对象的一个(至少一个)到达,则将它作为垃圾收集。在对象遍历阶段,GC必须记住哪些对象可以到达,以便删除不可到达的对象,这称为标记(marking)对象。

开始回收
当确定需要被回收的对象时, 便可以删除该对象, 再删除时, 删除时面临的问题是 :

  • 如果只是简单地删除未标记的对象, 并释放他们的内存空间, 就会在内存中分成很多小碎片, 这些小空间不足以生成新的对象
  • 可以将这些小空间整合起来, 重新组织内存中的对象, 并进行压缩, 形成可利用的大块空间, 但这样做GC需要停止其他活动, 进而使与之相关的应用程序工作停止
  • 更复杂的 GC不断增加或同时运行以减少或者清除应用程序的中断。有的GC使用单线程完成这项工作,有的则采用多线程以增加效率。

一些常用的垃圾收集器
(1)标记-清除收集器
这种收集器首先遍历对象图并标记可到达的对象,然后扫描堆栈以寻找未标记对象并释放它们的内存。这种收集器一般使用单线程工作并停止其他操作。并且,由于它只是清除了那些未标记的对象,而并没有对标记对象进行压缩,导致会产生大量内存碎片,从而浪费内存。
(2)标记-压缩收集器
有时也叫标记-清除-压缩收集器,与标记-清除收集器有相同的标记阶段。在第二阶段,则把标记对象复制到堆栈的新域中以便压缩堆栈。这种收集器也停止其他操作。
(3)复制收集器
这种收集器将堆栈分为两个域,常称为半空间。每次仅使用一半的空间,JVM生成的新对象则放在另一半空间中。GC运行时,它把可到达对象复制到另一半空间,从而压缩了堆栈。这种方法适用于短生存期的对象,持续复制长生存期的对象则导致效率降低。并且对于指定大小堆来说,需要两倍大小的内存,因为任何时候都只使用其中的一半。
(4) 增量收集器
增量收集器把堆栈分为多个域,每次仅从一个域收集垃圾,也可理解为把堆栈分成一小块一小块,每次仅对某一个块进行垃圾收集。这会造成较小的应用程序中断时间,使得用户一般不能觉察到垃圾收集器正在工作。
(5)分代收集器
复制收集器的缺点是:每次收集时,所有的标记对象都要被拷贝,从而导致一些生命周期很长的对象被来回拷贝多次,消耗大量的时间。而分代收集器则可解决这个问题,分代收集器把堆栈分为两个或多个域,用以存放不同寿命的对象。JVM生成的新对象一般放在其中的某个域中。过一段时间,继续存在的对象(非短命对象)将获得使用期并转入更长寿命的域中。分代收集器对不同的域使用不同的算法以优化性能。

使用垃圾收集器需要注意的地方

  • 每个对象只能调用finalize( )方法一次。如果在finalize( )方法执行时产生异常(exception),则该对象仍可以被垃圾收集器收集。
  • 垃圾收集器跟踪每一个对象,收集那些不可触及的对象(即该对象不再被程序引用 了),回收其占有的内存空间。但在进行垃圾收集的时候,垃圾收集器会调用该对象的finalize( )方法(如果有)。如果在finalize()方法中,又使得该对象被程序引用(俗称复活了),则该对象就变成了可触及的对象,暂时不会被垃圾收集了。但是由于每个对象只能调用一次finalize( )方法,所以每个对象也只可能 "复活 "一次。
  • 垃圾收集器不可以被强制执行,但程序员可以通过调研System.gc方法来建议执行垃圾收集。记住,只是建议。一般不建议自己写System.gc,因为会加大垃圾收集工作量。
  • Java语言允许程序员为任何方法添加finalize( )方法,该方法会在垃圾收集器交换回收对象之前被调用。但不要过分依赖该方法对系统资源进行回收和再利用,因为该方法调用后的执行结果是不可预知的。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容