语谱图,滤波器组(Filter banks、MFCC)

Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What's In-Between (2016.4)

MFCC特征提取(知乎)-demo操作



       机器学习第一步是特征提取,语音领域也不例外。目前使用最多的莫过于Filter banks和MFCC,两者整体相似,MFCC多了一步DCT(离散余弦变换)。       

       就目前来说,用的多得是Fbank,因为fbank的信息多余MFCC,MFCC多了一步DCT,某种程度上是对语音信息的损变,而且因为多了一步,计算量更大。

“MFCC=Fbank+DCT”

1、语谱图

0. 声音2比特

    先对声音文件进行采样,常见的16kHz,每秒等间隔的采样16k次该点振幅。采样完后得到整个音频文件的一个数值列表,每个值是该处振幅,此时可以选择进行预加重操作。

1.1、预加重、预增强:(可选)

预增强以帧为单位进行,目的在于加强高频。去除口唇辐射的影响,增加语音的高频分辨率。因为高频端大约在800Hz以上按6dB/oct (倍频程)衰减,频率越高相应的成分越小,为此要在对语音信号进行分析之前对其高频部分加以提升,也可以改善高频信噪比。 

经预加重后的结果为:    s(x)=s(x)-k*s(x-1)                  \forall x\in \mathbb{X}

k是预增强系数,范围为[0, 1),常用0.97,x是提取的wav时域数组的项,从公式可以看出每一帧的第一个数需要特殊处理。 

1.2、分帧:

分帧是将不定长的音频切分成固定长度的小段。 需要分帧是因为后续的傅里叶变换适用于分析平稳的信号,而语音信号是变化迅速的 。

为了避免窗边界对信号的遗漏,因此对帧做偏移时候,帧间要有帧迭(帧与帧之间需要重叠一部分)。通常的选择是帧长25ms(下图绿色),帧移为10ms(下图黄色)。接下来的操作是对单帧进行的。要分帧是因为语音信号是快速变化的,而傅里叶变换适用于分析平稳的信号。帧和帧之间的时间差常常取为10ms,这样帧与帧之间会有重叠(下图红色),否则,由于帧与帧连接处的信号会因为加窗而被弱化,这部分的信息就丢失了。

1.3、加窗:

傅里叶变换要求输入信号是平稳的,但是语音信号从整体上来讲是不平稳的。每帧信号通常要与一个平滑的窗函数相乘,让帧两端平滑地衰减到零,这样可以降低傅里叶变换后旁瓣的强度,取得更高质量的频谱  。

时域除了主瓣,还出现了不该出现的旁瓣,即“频谱泄露”。截断由窗函数来完成,实际的窗函数都存在着不同幅度的旁瓣,所以在卷积时,除了离散点的频率上有幅度分量外,在相邻的两个频率点之间也有不同程度的幅度,这些应该就是截断函数旁瓣所造成的。 避免的最好方法是满足整周期采样条件,现实中几乎不可能做到。声音信号非周期信号,任意截取有限长序列都不能代表原信号,矩形窗的频域是Sa函数,旁瓣起伏大,与原频谱卷积完会产生较大失真。穿函数的频谱,越像delta函数(主瓣窄,旁瓣小)频谱还原度越高。

常采用汉明窗,其对应的窗函数如下: 

2.1、快速傅里叶变换fft

即使是分帧过后极短时间的声音,仍是很多高低频声音的混杂,此时的数据是时域,通过傅里叶变换转换为频域可以将复杂声波分成各种频率的声波,方便神经网络进行学习。最终结果是个频率范围内的重要程度(能量)。

因为我们用的是数字音频(而非模拟音频),所以我们用到的是离散傅里叶变换。我们现在可以在每一帧上做N点FFT来计算频谱,也称为短时傅里叶变换(Short-Time Fourier-Transform, STFT),其中N通常为256或512,NFFT = 512.

                                                     P=\frac{|FFT(x_i)|^2}{N} x_i为信号x的第i

将得到的每一帧的变换按轴频率轴拼接在一起就成了语谱图。纵轴表示频率,横轴表示时间,颜色的深浅来代替频谱强度。


2. Fbank

  人耳对声音频谱的响应是非线性的,经验表明:如果我们能够设计一种前端处理算法,以类似于人耳的方式对音频进行处理,可以提高语音识别的性能。FilterBank就是这样的一种算法。FBank特征提取要在预处理之后进行,这时语音已经分帧,我们需要逐帧提取FBank特征。

2.2、Mel滤波器组

Mel滤波的过程如下图:

其中Hertz (f) and Mel (m)         m=2595·log_{10}(1+\frac{f}{700})

                                                       f=700(10^{m/2595}-1)

2.3、计算fbank的最后一步是在得到的功率谱上应用三角形滤波器,通常是40个滤波器。

将滤波器组应用于信号的功率谱(周期图),得到如下谱图(时频图):


致此Fbank结束。

剩余的MFCC的步骤可参照以下两篇

参考文章:   语音识别--MFCC

                  MFCC特征参数提取(知乎)

以及说得最清楚的一篇英文:Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What's In-Between

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352

推荐阅读更多精彩内容