fork
Unix/Linux操作系统提供了一个fork()
系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()
调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。
子进程永远返回0
,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()
就可以拿到父进程的ID。
import os
print('Process (%s) start...' % os.getpid())
# Only works on Unix/Linux/Mac:
pid = os.fork()
if pid == 0:
print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))
else:
print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
## 测试
Process (876) start...
I (876) just created a child process (877).
I am child process (877) and my parent is 876.
multiprocessing
from multiprocessing import Process
import os
# 子进程要执行的代码
def run_proc(name):
print('Run child process %s (%s)...' % (name, os.getpid()))
if __name__=='__main__':
print('Parent process %s.' % os.getpid())
p = Process(target=run_proc, args=('test',))
print('Child process will start.')
p.start()
p.join()
print('Child process end.')
## 测试
Parent process 928.
Process will start.
Run child process test (929)...
Process end.
创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process
实例,用start()
方法启动,这样创建进程比fork()
还要简单。
join()
方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。
Pool
如果要启动大量的子进程,可以用进程池的方式批量创建子进程:
from multiprocessing import Pool
import os, time, random
def long_time_task(name):
print('Run task %s (%s)...' % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('Task %s runs %0.2f seconds.' % (name, (end - start)))
if __name__=='__main__':
print('Parent process %s.' % os.getpid())
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print('Waiting for all subprocesses done...')
p.close()
p.join()
print('All subprocesses done.')
## 测试
Parent process 669.
Waiting for all subprocesses done...
Run task 0 (671)...
Run task 1 (672)...
Run task 2 (673)...
Run task 3 (674)...
Task 2 runs 0.14 seconds.
Run task 4 (673)...
Task 1 runs 0.27 seconds.
Task 3 runs 0.86 seconds.
Task 0 runs 1.41 seconds.
Task 4 runs 1.91 seconds.
All subprocesses done.
子进程
很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。
subprocess
模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。
import subprocess
print('$ nslookup www.python.org')
r = subprocess.call(['nslookup', 'www.python.org'])
print('Exit code:', r)
## 测试
$ nslookup www.python.org
Server: 192.168.19.4
Address: 192.168.19.4#53
Non-authoritative answer:
www.python.org canonical name = python.map.fastly.net.
Name: python.map.fastly.net
Address: 199.27.79.223
Exit code: 0
如果子进程还需要输入,则可以通过communicate()方法输入:
import subprocess
print('$ nslookup')
p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, err = p.communicate(b'set q=mx\npython.org\nexit\n')
print(output.decode('utf-8'))
print('Exit code:', p.returncode)
## 测试
$ nslookup
Server: 192.168.19.4
Address: 192.168.19.4#53
Non-authoritative answer:
python.org mail exchanger = 50 mail.python.org.
Authoritative answers can be found from:
mail.python.org internet address = 82.94.164.166
mail.python.org has AAAA address 2001:888:2000:d::a6
Exit code: 0
进程间通信
from multiprocessing import Process, Queue
import os, time, random
# 写数据进程执行的代码:
def write(q):
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
print('Process to read: %s' % os.getpid())
while True:
value = q.get(True)
print('Get %s from queue.' % value)
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 启动子进程pr,读取:
pr.start()
# 等待pw结束:
pw.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
pr.terminate()
## 测试
Process to write: 50563
Put A to queue...
Process to read: 50564
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.