TCP粘包、拆包与解决方案

UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。

TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。即面向流的通信是无消息保护边界的。

1 TCP粘包、拆包图解

5F0454F5-BAE3-42A7-8C43-DB1BA71A532B.png

假设客户端分别发送了两个数据包D1和D2给服务端,由于服务端一次读取到字节数是不确定的,故可能存在以下四种情况:

  • 服务端分两次读取到了两个独立的数据包,分别是D1和D2,没有粘包和拆包
  • 服务端一次接受到了两个数据包,D1和D2粘合在一起,称之为TCP粘包
  • 服务端分两次读取到了数据包,第一次读取到了完整的D1包和D2包的部分内容,第二次读取到了D2包的剩余内容,这称之为TCP拆包
  • 服务端分两次读取到了数据包,第一次读取到了D1包的部分内容D1_1,第二次读取到了D1包的剩余部分内容D1_2和完整的D2包。

特别要注意的是,如果TCP的接受滑窗非常小,而数据包D1和D2比较大,很有可能会发生第五种情况,即服务端分多次才能将D1和D2包完全接受,期间发生多次拆包。

2 发生原因

  • socket缓冲区与滑动窗口
  • MSS/MTU限制
  • Nagle算法

具体请看粘包、拆包产生原因:
https://zhuanlan.zhihu.com/p/103616849

3 解决方案:定义通信协议

通过定义应用的协议(protocol)来解决。协议的作用就定义传输数据的格式。这样在接受到的数据的时候,如果粘包了,就可以根据这个格式来区分不同的包,如果拆包了,就等待数据可以构成一个完整的消息来处理。目前业界主流的协议(protocol)方案可以归纳如下:

1 定长协议:假设我们规定每3个字节,表示一个有效报文,如果我们分4次总共发送以下9个字节:

 +---+----+------+----+
 | A | BC | DEFG | HI |
 +---+----+------+----+

那么根据协议,我们可以判断出来,这里包含了3个有效的请求报文

 +-----+-----+-----+
 | ABC | DEF | GHI |
 +-----+-----+-----+

2 特殊字符分隔符协议:在包尾部增加回车或者空格符等特殊字符进行分割 。

例如,按行解析,遇到字符\n、\r\n的时候,就认为是一个完整的数据包。对于以下二进制字节流:

 +--------------+
 | ABC\nDEF\r\n |
 +--------------+

那么根据协议,我们可以判断出来,这里包含了2个有效的请求报文

 +-----+-----+
 | ABC | DEF |
 +-----+-----+

3 长度编码:将消息分为消息头和消息体,消息头中用一个int型数据(4字节),表示消息体长度的字段。在解析时,先读取内容长度Length,其值为实际消息体内容(Content)占用的字节数,之后必须读取到这么多字节的内容,才认为是一个完整的数据报文。

 header    body
+--------+----------+
| Length | Content |
+--------+----------+

总的来说,通信协议就是通信双方约定好的数据格式,发送方按照这个数据格式来发送,接受方按照这个格式来解析。因此发送方和接收方要完成的工作不同,发送方要将发送的数据转换成协议规定的格式,称之为编码(encode);接收方需要根据协议的格式,对二进制数据进行解析,称之为解码(decode)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351