1. 定义与性质
红黑树是一种平衡的二叉查找树
1.1. 数据域
每个结点有 5 个数据域
- color: red or black
- key: keyword
- left: pointer to left child
- right:pointer to right child
- p: pointer to nil leaf
1.2. 红黑性质
满足下面的 红黑性质
的二叉查找树就是红黑树:
- 每个结点或是红色或是黑色
- 根是黑
- nil leaf 是 黑
- 红结点的孩子是黑
- 从每个结点出发,通过子孙到达叶子结点的各条路径上 黑结点数相等
如,叶子结点 是 nil, 即不存储任何东西, 为了编程方便,相对的,存有数据的结点称为内结点
为了节省空间, 可以如下实现, 只需要一个 nil 结点
1.3. 黑高度
从某个结点 x 到叶结点的黑色结点数,称为此结点的黑高度, 记为
树的黑高度是根的黑高度
- 以 x 为 根的子树至少包含 个结点
- 一颗有 n 个内结点的红黑树高度至多为
可用归纳法证明1
证明 2:
设树高 h
由红黑性质4, 根结点到叶子路径上的黑结点数至少 ,即
再由1,
即
2. 旋转
由于上面证明的红黑树高为 ,红黑树的 insert, delete, search 等操作都是, .
进行了 insert, delete 后可能破坏红黑性质, 可以通过旋转来保持.
下面是对结点 x 进行 左旋与右旋.
注意进行左旋时, 右孩子不是 nil(要用来作为旋转后 x 的双亲), 同理 右旋的结点的左孩子不是nil
总结起来就是: 父亲旋转,顺时针就是右旋,逆时针就是左旋, 旋转的结果是儿子成为原来父亲的新父亲, 即旋转的结点下降一层, 它的一个儿子上升一层.
3. 插入
插入的过程:
- 先同二叉查找树那样插入, 做为叶子(不为空)
- 然后将新结点的 左右孩子设为 nil , 颜色设为红色
- 最后再进行颜色调整以及旋转(维持红黑性质)
这是算法导论[1]上的算法
RB-INSERT(T, z)
y ← nil[T] // 新建节点“y”,将y设为空节点。
x ← root[T] // 设“红黑树T”的根节点为“x”
while x ≠ nil[T] // 找出要插入的节点“z”在二叉树T中的位置“y”
do y ← x
if key[z] < key[x]
then x ← left[x]
else x ← right[x]
p[z] ← y // 设置 “z的父亲” 为 “y”
if y = nil[T]
then root[T] ← z // 情况1:若y是空节点,则将z设为根
else if key[z] < key[y]
then left[y] ← z // 情况2:若“z所包含的值” < “y所包含的值”,则将z设为“y的左孩子”
else right[y] ← z // 情况3:(“z所包含的值” >= “y所包含的值”)将z设为“y的右孩子”
left[z] ← nil[T] // z的左孩子设为空
right[z] ← nil[T] // z的右孩子设为空。至此,已经完成将“节点z插入到二叉树”中了。
color[z] ← RED // 将z着色为“红色”
RB-INSERT-FIXUP(T, z) // 通过RB-INSERT-FIXUP对红黑树的节点进行颜色修改以及旋转,让树T仍然是一颗红黑树
3.1. 二叉查找树的插入
可以用python 实现如下
def insert(self,nd):
if not isinstance(nd,node):
nd = node(nd)
elif nd.isBlack: nd.isBlack = False
if self.root is None:
self.root = nd
self.root.isBlack = True
else:
parent = self.root
while parent:
if parent == nd : return None
if parent>nd:
if parent.left :
parent = parent.left
else:
parent.left = nd
break
else:
if parent.right:
parent = parent.right
else:
parent.right = nd
break
self.fixUpInsert(parent,nd)
3.2. 颜色调整与旋转
3.2.1. 问题
在插入后,可以发现后破坏的红黑性质只有以下两条(且互斥)
- root 是红 (这可以直接将root 颜色设为黑调整)
- 红结点的孩子是黑
所以下面介绍如何保持 红结点的孩子是黑 , 即插入结点的双亲结点是红的情况.
下面记 结点 x 的 双亲为 p(x), 新插入的结点为 x, 记 uncle 结点 为 u(x)
由于 p(x) 是红色, 而根结点是黑色, 所以 p(x)不是根, p(p(x))存在
3.2.2. 情况
有如下三种情况
每种情况的解决方案如下
3.2.2.1. case1: x 的叔叔是红色的
这里只需改变颜色, 将 p(x)变为 黑, p(p(x))变为红, u(x) 变为黑色 (x为右孩子同样)
3.2.2.2. case2: x 的叔叔是黑色, x,p(x), p(p(x)),方向为 left-right 或者 right-left
即 x,p(x), p(p(x)) 成折线状
3.2.2.3. case3: x 的叔叔是黑色, x,p(x), p(p(x)),方向为 left-left 或者 right-right
即 x,p(x), p(p(x)) 成直线状
当 x 为右孩子时, 通过旋转变成p(x) 的双亲, 然后相当于 新插入 p(x)作为左孩子, 再进行转换.
即将新结点的双亲向上一层旋转,颜色变为黑色, 而新节点的祖父向下一层, 颜色变为红色
3.2.3. 总体解决方案
我最开始也没有弄清楚, 有点绕晕的感觉, 后来仔细读了书上伪代码, 然后才发现就是一个状态机, 画出来就一目了然了.
现在算是知其然了, 那么怎样知其所以然呢? 即 为什么要分类这三个 case, 不重不漏了吗?
其实也简单, 只是太繁琐.
就是将各种情况枚举出来, 一一分析即可. 我最开始试过, 但是太多,写在代码里很容易写着写着就混了.
而算法导论上分成这三个case , 很简洁, 只是归纳了一下而已. 如果想看看枚举情况的图与说明,可以参考[2] .
算法导论上的伪代码
RB-INSERT-FIXUP(T, z)
while color[p[z]] = RED // 若“当前节点(z)的父节点是红色”,则进行以下处理。
do if p[z] = left[p[p[z]]] // 若“z的父节点”是“z的祖父节点的左孩子”,则进行以下处理。
then y ← right[p[p[z]]] // 将y设置为“z的叔叔节点(z的祖父节点的右孩子)”
if color[y] = RED // Case 1条件:叔叔是红色
then color[p[z]] ← BLACK ▹ Case 1 // (01) 将“父节点”设为黑色。
color[y] ← BLACK ▹ Case 1 // (02) 将“叔叔节点”设为黑色。
color[p[p[z]]] ← RED ▹ Case 1 // (03) 将“祖父节点”设为“红色”。
z ← p[p[z]] ▹ Case 1 // (04) 将“祖父节点”设为“当前节点”(红色节点)
else if z = right[p[z]] // Case 2条件:叔叔是黑色,且当前节点是右孩子
then z ← p[z] ▹ Case 2 // (01) 将“父节点”作为“新的当前节点”。
LEFT-ROTATE(T, z) ▹ Case 2 // (02) 以“新的当前节点”为支点进行左旋。
color[p[z]] ← BLACK ▹ Case 3 // Case 3条件:叔叔是黑色,且当前节点是左孩子。(01) 将“父节点”设为“黑色”。
color[p[p[z]]] ← RED ▹ Case 3 // (02) 将“祖父节点”设为“红色”。
RIGHT-ROTATE(T, p[p[z]]) ▹ Case 3 // (03) 以“祖父节点”为支点进行右旋。
else (same as then clause with "right" and "left" exchanged) // 若“z的父节点”是“z的祖父节点的右孩子”,将上面的操作中“right”和“left”交换位置,然后依次执行。
color[root[T]] ← BLACK
我用python 实现如下. 由于左右方向不同, 如果向上面伪代码那样实现, fixup 代码就会有两份类似的(即 right left 互换), 为了减少代码冗余, 我就定义了 setChild
, getChild
函数, 传递左或是右孩子这个方向的数据(代码中是isLeft), 所以下面的就是完整功能的 fixup, 可以减少一般的代码量, haha😄,
(下文 删除结点同理)
其实阅读代码也简单, 可以直接当成 isLeft 取真值.
def fixUpInsert(self,parent,nd):
''' adjust color and level, there are two red nodes: the new one and its parent'''
while not self.checkBlack(parent):
grand = self.getParent(parent)
isLeftPrt = grand.left is parent
uncle = grand.getChild(not isLeftPrt)
if not self.checkBlack(uncle):
# case 1: new node's uncle is red
self.setBlack(grand, False)
self.setBlack(grand.left, True)
self.setBlack(grand.right, True)
nd = grand
parent = self.getParent(nd)
else:
# case 2: new node's uncle is black(including nil leaf)
isLeftNode = parent.left is nd
if isLeftNode ^ isLeftPrt:
# case 2.1 the new node is inserted in left-right or right-left form
# grand grand
# parent or parent
# nd nd
parent.setChild(nd.getChild(isLeftPrt),not isLeftPrt)
nd.setChild(parent,isLeftPrt)
grand.setChild(nd,isLeftPrt)
nd,parent = parent,nd
# case 2.2 the new node is inserted in left-left or right-right form
# grand grand
# parent or parent
# nd nd
grand.setChild(parent.getChild(not isLeftPrt),isLeftPrt)
parent.setChild(grand,not isLeftPrt)
self.setBlack(grand, False)
self.setBlack(parent, True)
self.transferParent(grand,parent)
self.setBlack(self.root,True)
4. 删除
算法导论上的算法
写的很简练👍
4.1. 二叉查找树删除结点
下面 z 是要删除的结点, y 是 其后继或者是它自己, x 是 y 的一个孩子(如果 y 的孩子为 nil,则为 nli, 否则 y 只有一个非 nil 孩子, 为 x)
- 当 z 孩子全是 nil (y==z): 直接让其双亲对应的孩子为 nil
- 当 z 只有一个非 nil 孩子 x (y==z):
- 如果 z 为根, 则让 x 为根.
- 让 y 的双亲连接到 x
- 当 z 有两个非nil孩子(y!=z): 复制其后继 y 的内容到 z (除了指针,颜色) , 将其后继 y 的孩子(最多只有一个 非 nil ,不然就不是后继了)连接到其后继的双亲, 删除 其后继y,
即[3] 如果要删除有两个孩子的结点 z , 则找到它的后继y(前趋同理), 可以推断 y 一定没有左孩子, 右孩子可能有,可能没有. 也就是最多一个孩子.
所以将 y 的值复制到 x 位置, 现在相当于删除 y 处的结点.
这样就化为 删除的结点最多一个孩子的情况.
4.2. 调整颜色与旋转
可以发现只有当 y 是黑色,才进行颜色调整以及旋转(维持红黑性质), 因为如果删除的是红色, 不会影响黑高度, 所有红黑性质都不会破坏
伪代码如下, (我的python代码见文末)
如果被删除的结点 y 是黑色的, 有三种破坏红黑性质的情况
- y是根, 则 y 的一个红色孩子成为新根
- 进行删除结点过程中, p(y) 的孩子有 x, 两者都是红色
- 删除 y 导致包含y 的路径上的黑结点 少 1个
修复3的思路:
如果可能,在兄弟一支,通过旋转,改变颜色修复
否则, 将红结点一直向上推(因为当前路径上少了一个黑结点,向上推的过程中使红结点所在的子树都少一个黑结点), 直到到达树根, 那么全部路径都少一个黑结点, 3就修复了, 这时只需将根设为黑就修复了 1
代码中的 while 循环的目的是将额外的黑色沿树上移,直到
- x 指向一个红黑结点
- x 指向根,这时可以简单地消除额外的黑色
- 颜色修改与旋转
在 while 中, x 总是指向具有双重黑色的那个非根结点, 在第 2 行中要判断 x 是其双亲的左右孩子
w 表示 x 的相抵. w 不能为 nil(因为 x 是双重黑色)
算法中的四种情况如图所示
即
-
x 的兄弟 w 是红色的
x 的兄弟 w 是黑色的, w的两个孩子都是黑色的
x 的兄弟 w 是黑色的, w 的左孩子是红,右孩子是黑
x 的兄弟 w 是黑色的, w 的孩子是红色的
注意上面都是先考虑的左边, 右边可以对称地处理.
同插入一样, 为了便于理解, 可以作出状态机.
而且这些情形都是归纳化简了的, 你也可以枚举列出基本的全部情形.
5. 数据结构的扩张
5.1. 平衡树的扩张
通过在平衡树(如红黑树上的每个结点 加上 一个数据域 size (表示以此结点为根的子树的结点数.) 可以使获得第 i 大的数
的时间复杂度为
在 时间内建立, python代码如下
def setSize(root):
if root is None:return 0
root.size = setSize(root.left) + setSize(root.right)+1
在时间查找,
def find(root,i):
r = root.left.size +1
if r==i:
return root
if r > i:
return find(root.left,i)
else:
return find(root.right,i-r)
6. python 代码
我用了 setChild, getChild 来简化代码量, 其他的基本上是按照算法导论上的伪代码提到的case 来实现的. 然后display 只是测试的时候,为了方便调试而层序遍历打印出来
效果如下
''' mbinary
#########################################################################
# File : redBlackTree.py
# Author: mbinary
# Mail: zhuheqin1@gmail.com
# Blog: https://mbinary.coding.me
# Github: https://github.com/mbinary
# Created Time: 2018-07-14 16:15
# Description:
#########################################################################
'''
from functools import total_ordering
from random import randint, shuffle
@total_ordering
class node:
def __init__(self,val,left=None,right=None,isBlack=False):
self.val =val
self.left = left
self.right = right
self.parent= None
self.isBlack = isBlack
def __lt__(self,nd):
return self.val < nd.val
def __eq__(self,nd):
return nd is not None and self.val == nd.val
def setChild(self,nd,isLeft):
if isLeft: self.left = nd
else: self.right = nd
if nd is not None: nd.parent = self
def getChild(self,isLeft):
if isLeft: return self.left
else: return self.right
def __bool__(self):
return self.val is not None
def __str__(self):
color = 'B' if self.isBlack else 'R'
val = '-' if self.parent==None else self.parent.val
return f'{color}-{self.val}'
def __repr__(self):
return f'node({self.val},isBlack={self.isBlack})'
class redBlackTree:
def __init__(self,unique=False):
'''if unique is True, all node'vals are unique, else there may be equal vals'''
self.root = None
self.unique = unique
@staticmethod
def checkBlack(nd):
return nd is None or nd.isBlack
@staticmethod
def setBlack(nd,isBlack):
if nd is not None:
if isBlack is None or isBlack:
nd.isBlack = True
else:nd.isBlack = False
def setRoot(self,nd):
if nd is not None: nd.parent=None
self.root= nd
def find(self,val):
nd = self.root
while nd:
if nd.val ==val:
return nd
else:
nd = nd.getChild(nd.val>val)
def getSuccessor(self,nd):
if nd:
if nd.right:
nd = nd.right
while nd.left:
nd = nd.left
return nd
else:
while nd.parent is not None and nd.parent.right is nd:
nd = nd.parent
return None if nd is self.root else nd.parent
def rotate(self,prt,chd):
'''rotate prt with the center of chd'''
if self.root is prt:
self.setRoot(chd)
else:
prt.parent.setChild(chd, prt.parent.left is prt)
isLeftChd = prt.left is chd
prt.setChild(chd.getChild(not isLeftChd), isLeftChd)
chd.setChild(prt,not isLeftChd)
def insert(self,nd):
if nd.isBlack: nd.isBlack = False
if self.root is None:
self.setRoot(nd)
self.root.isBlack = True
else:
parent = self.root
while parent:
if parent == nd : return None
isLeft = parent > nd
chd = parent.getChild(isLeft)
if chd is None:
parent.setChild(nd,isLeft)
break
else:
parent = chd
self.fixUpInsert(parent,nd)
def fixUpInsert(self,parent,nd):
''' adjust color and level, there are two red nodes: the new one and its parent'''
while not self.checkBlack(parent):
grand = parent.parent
isLeftPrt = grand.left is parent
uncle = grand.getChild(not isLeftPrt)
if not self.checkBlack(uncle):
# case 1: new node's uncle is red
self.setBlack(grand, False)
self.setBlack(grand.left, True)
self.setBlack(grand.right, True)
nd = grand
parent = nd.parent
else:
# case 2: new node's uncle is black(including nil leaf)
isLeftNode = parent.left is nd
if isLeftNode ^ isLeftPrt:
# case 2.1 the new node is inserted in left-right or right-left form
# grand grand
# parent or parent
# nd nd
self.rotate(parent,nd) #parent rotate
nd,parent = parent,nd
# case 3 (case 2.2) the new node is inserted in left-left or right-right form
# grand grand
# parent or parent
# nd nd
self.setBlack(grand, False)
self.setBlack(parent, True)
self.rotate(grand,parent)
self.setBlack(self.root,True)
def copyNode(self,src,des):
'''when deleting a node which has two kids,
copy its succesor's data to his position
data exclude left, right , isBlack
'''
des.val = src.val
def delete(self,val):
'''delete node in a binary search tree'''
if isinstance(val,node): val = val.val
nd = self.find(val)
if nd is None: return
self._delete(nd)
def _delete(self,nd):
y = None
if nd.left and nd.right:
y= self.getSuccessor(nd)
else:
y = nd
py = y.parent
x = y.left if y.left else y.right
if py is None:
self.setRoot(x)
else:
py.setChild(x,py.left is y)
if y != nd:
self.copyNode(y,nd)
if self.checkBlack(y): self.fixUpDel(py,x)
def fixUpDel(self,prt,chd):
''' adjust colors and rotate '''
while self.root != chd and self.checkBlack(chd):
isLeft =prt.left is chd
brother = prt.getChild(not isLeft)
# brother is black
lb = self.checkBlack(brother.getChild(isLeft))
rb = self.checkBlack(brother.getChild(not isLeft))
if not self.checkBlack(brother):
# case 1: brother is red. converted to case 2,3,4
self.setBlack(prt,False)
self.setBlack(brother,True)
self.rotate(prt,brother)
elif lb and rb:
# case 2: brother is black and two kids are black.
# conveted to the begin case
self.setBlack(brother,False)
chd = prt
prt= chd.parent
else:
if rb:
# case 3: brother is black and left kid is red and right child is black
# rotate bro to make g w wl wr in one line
# uncle's son is nephew, and niece for uncle's daughter
nephew = brother.getChild(isLeft)
self.setBlack(nephew,True)
self.setBlack(brother,False)
# brother (not isLeft) rotate
self.rotate(brother,nephew)
brother = nephew
# case 4: brother is black and right child is red
brother.isBlack = prt.isBlack
self.setBlack(prt,True)
self.setBlack(brother.getChild(not isLeft),True)
self.rotate(prt,brother)
chd = self.root
self.setBlack(chd,True)
def sort(self,reverse = False):
''' return a generator of sorted data'''
def inOrder(root):
if root is None:return
if reverse:
yield from inOrder(root.right)
else:
yield from inOrder(root.left)
yield root
if reverse:
yield from inOrder(root.left)
else:
yield from inOrder(root.right)
yield from inOrder(self.root)
def display(self):
def getHeight(nd):
if nd is None:return 0
return max(getHeight(nd.left),getHeight(nd.right)) +1
def levelVisit(root):
from collections import deque
lst = deque([root])
level = []
h = getHeight(root)
ct = lv = 0
while 1:
ct+=1
nd = lst.popleft()
if ct >= 2**lv:
lv+=1
if lv>h:break
level.append([])
level[-1].append(str(nd))
if nd is not None:
lst += [nd.left,nd.right]
else:
lst +=[None,None]
return level
def addBlank(lines):
width = 1+len(str(self.root))
sep = ' '*width
n = len(lines)
for i,oneline in enumerate(lines):
k = 2**(n-i) -1
new = [sep*((k-1)//2)]
for s in oneline:
new.append(s.ljust(width))
new.append(sep*k)
lines[i] = new
return lines
lines = levelVisit(self.root)
lines = addBlank(lines)
li = [''.join(line) for line in lines]
length = 10 if li==[] else max(len(i) for i in li)//2
begin ='\n'+ 'red-black-tree'.rjust(length+14,'-') + '-'*(length)
end = '-'*(length*2+14)+'\n'
return '\n'.join([begin,*li,end])
def __str__(self):
return self.display()
测试代码
def genNum(n =10):
nums =[]
for i in range(n):
while 1:
d = randint(0,100)
if d not in nums:
nums.append(d)
break
return nums
def buildTree(n=10,nums=None,visitor=None):
if nums is None or nums ==[]: nums = genNum(n)
rbtree = redBlackTree()
print(f'build a red-black tree using {nums}')
for i in nums:
rbtree.insert(node(i))
if visitor:
visitor(rbtree,i)
return rbtree,nums
def testInsert(nums=None):
def visitor(t,val):
print('inserting', val)
print(t)
rbtree,nums = buildTree(visitor = visitor,nums=nums)
print('-'*5+ 'in-order visit' + '-'*5)
for i,j in enumerate(rbtree.sort()):
print(f'{i+1}: {j}')
def testSuc(nums=None):
rbtree,nums = buildTree(nums=nums)
for i in rbtree.sort():
print(f'{i}\'s suc is {rbtree.getSuccessor(i)}')
def testDelete(nums=None):
rbtree,nums = buildTree(nums = nums)
print(rbtree)
for i in sorted(nums):
print(f'deleting {i}')
rbtree.delete(i)
print(rbtree)
if __name__=='__main__':
lst =[45, 30, 64, 36, 95, 38, 76, 34, 50, 1]
lst = [0,3,5,6,26,25,8,19,15,16,17]
#testSuc(lst)
#testInsert(lst)
testDelete()