Tensorflow中的object detection API:Configure Jobs

在本地跑一个实例之前,我们还需要一步准备工作。Configuring the Object Detection Training Pipeline
(╯' - ')╯︵ ┻━┻
┬─┬ ノ( ' - 'ノ) {摆好摆好}
(╯°Д°)╯︵ ┻━┻
这个API呢,使用protobuf来配置训练及评价过程,跟caffe一样样的。高屋建瓴地讲,配置文件要包括5部分

  1. 模型配置:来定义使用什么样的模型;
  2. 训练配置:训练过程中的一些参数配置,如 梯度下降的参数配置,输入的预处理什么的;
  3. 评价配置
  4. 训练输入设置
  5. 评价输入设置

配置文件大概长这个样子

model {
(... Add model config here...)
}

train_config : {
(... Add train_config here...)
}

train_input_reader: {
(... Add train_input configuration here...)
}

eval_config: {
}

eval_input_reader: {
(... Add eval_input configuration here...)
}

Picking Model Parameters

配置模型是个麻烦活儿,往往适合的才是最好的。Faster R-CNN精度高但速度慢。SSD速度较快。作者们在论文里仔细地研究了速度和精度的相关问题。为了方便入手,API在object_detection/samples/model_configs文件夹下提供了示例模型配置。

定义输入

之前提过API用的是TFRecord的文件格式。这里要给出训练和评价文件的位置,同时label map也要给出
引用文档中的一个例子

tf_record_input_reader { 
input_path: "/usr/home/username/data/train.record"
}
label_map_path: "/usr/home/username/data/label_map.pbtxt"

配置训练器

用以配置训练进程

  1. 模型参数的初始化
  2. 输入预处理
  3. 随机梯度下降的参数设置
    举个栗子
batch_size: 1
optimizer {
  momentum_optimizer: {
    learning_rate: {
      manual_step_learning_rate {
        initial_learning_rate: 0.0002
        schedule {
          step: 0
          learning_rate: .0002
        }
        schedule {
          step: 900000
          learning_rate: .00002
        }
        schedule {
          step: 1200000
          learning_rate: .000002
        }
      }
    }
    momentum_optimizer_value: 0.9
  }
  use_moving_average: false
}
fine_tune_checkpoint: "/usr/home/username/tmp/model.ckpt-#####"
from_detection_checkpoint: true
gradient_clipping_by_norm: 10.0
data_augmentation_options {
  random_horizontal_flip {
  }
}

初级阶段可以在这个的基础上微改。

模型参数初始化

为了加快训练进程,一般都会在已有的分类模型或或检测模型基础上进行训练。训练配置有两个需要设置的地方,fine_tune_checkpoint和from_detection_checkpoint。fine_tune_checkpoint 要求提供一个已有模型的路径。from_detetion_checkpoint 是一个布尔值,当设置为假的时候,认为导入的是一个分类模型。

provided checkpoints

官方提供了一些在coco数据集上的预先训练好的模型。

Model name Speed COCO mAP Outputs
ssd_mobilenet_v1_coco fast 21 Boxes
ssd_inception_v2_coco fast 24 Boxes
rfcn_resnet101_coco medium 30 Boxes
faster_rcnn_resnet101_coco medium 32 Boxes
faster_rcnn_inception_resnet_v2_atrous_coco slow 37 Boxes

输入预处理

在train_config中可以选择是否启用数据扩充

SGD 参数

梯度下降的超参数设置

评价器的配置

使用了PASCAL VOC的设置,不需要改动。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容