书生大模型全链路开源体系

书生大模型包括一系列开源的高质量的大模型,同时为了便利开发者和使用者,提供了全栈的开发工具。
GitHub地址为:https://github.com/internLM/
书生大模型全链路开源体系总共分三大部分

书生大模型全链路开源体系

模型

  • InternLM: 一系列的基础大模型和对话大模型.
  • InternLM-Math: 强大的、专业的数学大模型.
  • InternLM-XComposer: 基于InternLM开发的,支持视觉-语言复合数据的大模型.

InternLM

GitHub地址:https://github.com/InternLM/InternLM
书生基础大模型有以下版本

InternLM3

Model Transformers ModelScope Modelers Release Date
InternLM3-8B-Instruct internlm3_8B_instruct internlm3_8b_instruct Open in Modelers 2025-01-15

InternLM2.5

Model Transformers(HF) ModelScope(HF) Release Date
InternLM2.5-1.8B 🤗internlm2_5-1_8b internlm2_5-1_8b 2024-08-05
InternLM2.5-1.8B-Chat 🤗internlm2_5-1_8b-chat internlm2_5-1_8b-chat 2024-08-05
InternLM2.5-7B 🤗internlm2_5-7b internlm2_5-7b 2024-07-03
InternLM2.5-7B-Chat 🤗internlm2_5-7b-chat internlm2_5-7b-chat 2024-07-03
InternLM2.5-7B-Chat-1M 🤗internlm2_5-7b-chat-1m internlm2_5-7b-chat-1m 2024-07-03
InternLM2.5-20B 🤗internlm2_5-20b internlm2_5-20b 2024-08-05
InternLM2.5-20B-Chat 🤗internlm2_5-20b-chat internlm2_5-20b-chat 2024-08-05

InternLM-Math

InternLM2-Math-Plus

GitHub地::https://github.com/InternLM/InternLM-Math

Model Model Type Transformers(HF) ModelScope Release Date
InternLM2-Math-Plus-1.8B Chat 🤗internlm/internlm2-math-plus-1_8b Shanghai_AI_Laboratory/internlm2-math-plus-1_8b 2024-05-27
InternLM2-Math-Plus-7B Chat 🤗internlm/internlm2-math-plus-7b Shanghai_AI_Laboratory/internlm2-math-plus-7b 2024-05-27
InternLM2-Math-Plus-20B Chat 🤗internlm/internlm2-math-plus-20b Shanghai_AI_Laboratory/internlm2-math-plus-20b 2024-05-27
InternLM2-Math-Plus-Mixtral8x22B Chat 🤗internlm/internlm2-math-plus-mixtral8x22b Shanghai_AI_Laboratory/internlm2-math-plus-mixtral8x22b 2024-05-27

InternLM2-Math-Base

Model Model Type Transformers(HF) ModelScope Release Date
InternLM2-Math-Base-7B Base 🤗internlm/internlm2-math-base-7b internlm2-math-base-7b 2024-01-23
InternLM2-Math-Base-20B Base 🤗internlm/internlm2-math-base-20b internlm2-math-base-20b 2024-01-23
InternLM2-Math-7B Chat 🤗internlm/internlm2-math-7b internlm2-math-7b 2024-01-23
InternLM2-Math-20B Chat 🤗internlm/internlm2-math-20b internlm2-math-20b 2024-01-23

InternLM-XComposer

书生.浦语-灵笔
GitHub地址:https://github.com/InternLM/InternLM-XComposer

Model Usage Transformers(HF) ModelScope(HF) Release Date
InternLM-XComposer-2.5 Video Understanding, Multi-image Multi-tune Dialog, 4K Resolution Understanding, Web Craft, Article creation, Benchmark 🤗internlm-xcomposer2.5 internlm-xcomposer2.5 2024-07-03
InternLM-XComposer2-4KHD 4K Resolution Understanding, Benchmark, VL-Chat 🤗internlm-xcomposer2-4khd-7b internlm-xcomposer2-4khd-7b 2024-04-09
InternLM-XComposer2-VL-1.8B Benchmark, VL-Chat 🤗internlm-xcomposer2-vl-1_8b internlm-xcomposer2-vl-1_8b 2024-04-09
InternLM-XComposer2 Text-Image Composition 🤗internlm-xcomposer2-7b internlm-xcomposer2-7b 2024-01-26
InternLM-XComposer2-VL Benchmark, VL-Chat 🤗internlm-xcomposer2-vl-7b internlm-xcomposer2-vl-7b 2024-01-26
InternLM-XComposer2-4bit Text-Image Composition 🤗internlm-xcomposer2-7b-4bit internlm-xcomposer2-7b-4bit 2024-02-06
InternLM-XComposer2-VL-4bit Benchmark, VL-Chat 🤗internlm-xcomposer2-vl-7b-4bit internlm-xcomposer2-vl-7b-4bit 2024-02-06
InternLM-XComposer Text-Image Composition, VL-Chat 🤗internlm-xcomposer-7b internlm-xcomposer-7b 2023-09-26
InternLM-XComposer-4bit Text-Image Composition, VL-Chat 🤗internlm-xcomposer-7b-4bit internlm-xcomposer-7b-4bit 2023-09-26
InternLM-XComposer-VL Benchmark 🤗internlm-xcomposer-vl-7b internlm-xcomposer-vl-7b 2023-09-26

工具链

  • InternEvo: 支持大模型预训练和微调的轻量级框架。
  • XTuner: 高效的大模型微调工具,支持多种大模型和多种调优方法。
  • LMDeploy: 用来压缩、部署和使用大模型的工具。
  • Lagent: 让用户高效率的开发agent的轻量级框架.
  • AgentLego: 扩展和增强agent的一组类库和工具
  • OpenCompass: 大模型评测平台.
  • OpenAOE: 大模型比对工具.

InternEvo

XTuner

GitHub地址:https://github.com/InternLM/InternEvo/
支持多种大模型的预训练和微调

LMDeploy

GitHub地址:https://github.com/InternLM/lmdeploy

LLMs

Llama (7B - 65B)
Llama2 (7B - 70B)
Llama3 (8B, 70B)
Llama3.1 (8B, 70B)
Llama3.2 (1B, 3B)
InternLM (7B - 20B)
InternLM2 (7B - 20B)
InternLM3 (8B)
InternLM2.5 (7B)
Qwen (1.8B - 72B)
Qwen1.5 (0.5B - 110B)
Qwen1.5 - MoE (0.5B - 72B)
Qwen2 (0.5B - 72B)
Qwen2-MoE (57BA14B)
Qwen2.5 (0.5B - 32B)
Baichuan (7B)
Baichuan2 (7B-13B)
Code Llama (7B - 34B)
ChatGLM2 (6B)
GLM4 (9B)
CodeGeeX4 (9B)
Falcon (7B - 180B)
YI (6B-34B)
Mistral (7B)
DeepSeek-MoE (16B)
DeepSeek-V2 (16B, 236B)
DeepSeek-V2.5 (236B)
Mixtral (8x7B, 8x22B)
Gemma (2B - 7B)
Dbrx (132B)
StarCoder2 (3B - 15B)
Phi-3-mini (3.8B)
Phi-3.5-mini (3.8B)
Phi-3.5-MoE (16x3.8B)
MiniCPM3 (4B)

Lagent

GitHub地址:https://github.com/InternLM/lagent
高效、轻量级的开发工具,大大提高agent的开发效率。

lagent

AgentLego

提供了多种类库,支持开发强大的智能体
General ability

Speech related

Image-processing related

  • ImageDescription: Describe the input image.
  • OCR: Recognize the text from a photo.
  • VQA: Answer the question according to the image.
  • HumanBodyPose: Estimate the pose or keypoints of human in an image.
  • HumanFaceLandmark: Estimate the landmark or keypoints of human faces in an image.
  • ImageToCanny: Extract the edge image from an image.
  • ImageToDepth: Generate the depth image of an image.
  • ImageToScribble: Generate a sketch scribble of an image.
  • ObjectDetection: Detect all objects in the image.
  • TextToBbox: Detect specific objects described by the given text in the image.
  • Segment Anything series
    • SegmentAnything: Segment all items in the image.
    • SegmentObject: Segment the certain objects in the image according to the given object name.

AIGC related

OpenCompass

GitHub地址: https://github.com/open-compass/opencompass

image.png

OpenAOE

What can you get from OpenAOE?

OpenAOE can:

  1. return one or more LLMs' answers at the same time by a single prompt.
  2. provide access to commercial LLM APIs, with default support for gpt3.5, gpt4, Google Palm, Minimax, Claude, Spark, etc., and also support user-defined access to other large model APIs. (API keys need to be prepared in advanced)
  3. provide access to open-source LLM APIs. ( We recommend to use LMDeploy to deploy with one click)
  4. provide backend APIs and a WEB-UI to meet the needs of different requirements.

应用

HuixiangDou茴香豆

GitHub地址:https://github.com/InternLM/HuixiangDou
HuixiangDou1 is a professional knowledge assistant based on LLM.

Advantages:

  1. Design three-stage pipelines of preprocess, rejection and response
  2. No training required, with CPU-only, 2G, 10G, 20G and 80G configuration
  3. Offers a complete suite of Web, Android, and pipeline source code, industrial-grade and commercially viable

Check out the scenes in which HuixiangDou are running and join WeChat Group to try AI assistant inside.

If this helps you, please give it a star

MindSearch

GitHub地址: https://github.com/InternLM/MindSearch
MindSearch 是一个开源的 AI 搜索引擎框架,具有与 Perplexity.ai Pro 相同的性能。您可以轻松部署它来构建您自己的搜索引擎,可以使用闭源 LLM(如 GPT、Claude)或开源 LLM(InternLM2.5 系列模型经过专门优化,能够在 MindSearch 框架中提供卓越的性能;其他开源模型没做过具体测试)。其拥有以下特性:

  • 🤔 任何想知道的问题:MindSearch 通过搜索解决你在生活中遇到的各种问题
  • 📚 深度知识探索:MindSearch 通过数百网页的浏览,提供更广泛、深层次的答案
  • 🔍 透明的解决方案路径:MindSearch 提供了思考路径、搜索关键词等完整的内容,提高回复的可信度和可用性。
  • 💻 多种用户界面:为用户提供各种接口,包括 React、Gradio、Streamlit 和本地调试。根据需要选择任意类型。
  • 🧠 动态图构建过程:MindSearch 将用户查询分解为图中的子问题节点,并根据 WebSearcher 的搜索结果逐步扩展图
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容