房天下爬虫可分布式

  • 需要观察房天下url的构造,本次爬取的是新房和二手房两个栏目的具体字段。
  • 涉及到的知识点有url的拼接,具体字段的解析清洗,页面不规整的情况下,怎样提取。
  • 分布式部署的相关操作
  • 在爬的时候建议网页延迟多一些。
    fangtianxia.py文件
import scrapy,re
from fang.items import NewHouseItem,ESFHouseItem

class FangtianxiaSpider(scrapy.Spider):
    name = 'fangtianxia'
    allowed_domains = ['fang.com']
    start_urls = ['http://www.fang.com/SoufunFamily.htm']

    def parse(self, response):
        trs = response.xpath('//div[@class="outCont"]//tr')
        province = None # 首先设为没有值,下方判断有值在赋给province
        for tr in trs:
            tds = tr.xpath('.//td[not(@class)]')
            province_td = tds[0] # 提取省份,由于省份不是每一行都有的,所以要过滤一下
            province_text = province_td.xpath('.//text()').get() # 没有省份的那一行会有空格
            province_text = re.sub(r'\s','',province_text) # 用sub替换一下,好判断
            if province_text:
                province = province_text # 如果有值,就赋给province
            if '其它' in province: # 不提取海外的
                continue
            city_id = tds[1] # 接下来提取城市链接和城市名称
            city_links = city_id.xpath('.//a')
            for city_link in city_links:
                city_url = city_link.xpath('.//@href').get()
                city = city_link.xpath('.//text()').get()

                # 构建新房和二手房的url
                url_module = city_url.split('fang')
                prefix = url_module[0]
                domain = url_module[1]
                # 北京特殊,特殊处理一下
                if 'bj' in prefix:
                    newhouse_url = 'http://' + 'newhouse.fang' + domain + 'house/s/'
                    esf_url = 'http://' + 'esf.fang' + domain
                else:
                # 构建新房的url
                    newhouse_url = prefix + 'newhouse.fang' + domain + 'house/s/'
                    # 构建二手房的url
                    esf_url = prefix + 'esf.fang' + domain
                # meta里面可以携带一些参数信息放到Request里面,在callback函数里面通过response获取
                yield scrapy.Request(url=newhouse_url,callback=self.parse_newhouse,meta={'info':(province,city)})

                yield scrapy.Request(url=esf_url,callback=self.parse_esf,meta={'info':(province,city)})


    def parse_newhouse(self,response):
        # 解析新房具体字段
        # meta里面可以携带一些参数信息放到Request里面,在callback函数里面通过response获取
        province,city = response.meta.get('info')
        lis = response.xpath('//div[contains(@class,"nl_con")]/ul/li')
        for li in lis:
            name = li.xpath(".//div[contains(@class,'house_value')]//div[@class='nlcd_name']/a/text()").get()
            if name:
                name = re.sub(r"\s","",name)
            house_type_list = li.xpath('.//div[contains(@class,"house_type")]/a/text()').getall()
            #house_type_list = list(map(lambda x:x.replace(' ',''),house_type_list))
            house_type_list = list(map(lambda x:re.sub(r'/s','',x),house_type_list))
            rooms = list(filter(lambda x:x.endswith('居'),house_type_list))
            area = ''.join(li.xpath('.//div[contains(@class,"house_type")]/text()').getall())
            area = re.sub(r'\s|-|/','',area)
            address = li.xpath('.//div[@class="address"]/a/@title').get()
            # district_text = ''.join(li.xpath('.//div[@class="address"]/a//text()').getall())
            # district = re.search(r'.*\[(.+)\].*',district_text).group(1)
            sale = li.xpath(".//div[contains(@class,'fangyuan')]/span/text()").get()
            price = "".join(li.xpath(".//div[@class='nhouse_price']//text()").getall())
            price = re.sub(r"\s|广告", "", price)
            # 详情页url
            origin_url = li.xpath(".//div[@class='nlcd_name']/a/@href").get()

            item = NewHouseItem(name=name,rooms=rooms.get(),area=area,address=address,
                                sale=sale,price=price,origin_url=origin_url,province=province,city=city)
            yield item

            # 下一页
            # next_url = response.xpath("//div[@class='page']//a[@class='next']/@href").get()
            # if next_url:
            #     yield scrapy.Request(url=response.urljoin(next_url),
            #                          callback=self.parse_newhouse,
            #                          meta={'info': (provice, city)}
            #                          )

    def parse_esf(self, response):
        # 二手房
        province, city = response.meta.get('info')
        dls = response.xpath("//div[@class='shop_list shop_list_4']/dl")
        for dl in dls:
            item = ESFHouseItem(province=province,city=city)
            name = dl.xpath(".//span[@class='tit_shop']/text()").get()
            if name:
                infos = dl.xpath(".//p[@class='tel_shop']/text()").getall()
                infos = list(map(lambda x: re.sub(r"\s", "", x), infos))
                for info in infos:
                    if "厅" in info:
                        item["rooms"] = info
                    elif '层' in info:
                        item["floor"] = info
                    elif '向' in info:
                        item['toward'] = info
                    elif '㎡' in info:
                        item['area'] = info
                    elif '年建' in info:
                        item['year'] = re.sub("年建", "", info)
                item['address'] = dl.xpath(".//p[@class='add_shop']/span/text()").get()
                # 总价
                item['price'] = "".join(dl.xpath(".//span[@class='red']//text()").getall())
                # 单价
                item['unit'] = dl.xpath(".//dd[@class='price_right']/span[2]/text()").get()
                item['name'] = name
                detail = dl.xpath(".//h4[@class='clearfix']/a/@href").get()
                item['origin_url'] = response.urljoin(detail)
                yield item
        # 下一页
        # next_url = response.xpath("//div[@class='page_al']/p/a/@href").get()
        # if next_url:
        #     yield scrapy.Request(url=response.urljoin(next_url),
        #                          callback=self.parse_esf,
        #                          meta={'info': (provice, city)}
        #                          )

item.py文件

import scrapy
from scrapy import Field

class NewHouseItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    # 省份
    province = Field()
    # 城市
    city = Field()
    # 小区名字
    name = Field()
    # 价格
    price = Field()
    # 几居室,这是一个列表
    rooms = Field()
    # 面积
    area = Field()
    # 地址
    address = Field()


    sale = Field()
    # 房天下详情url
    origin_url = Field()


class ESFHouseItem(scrapy.Item):
    # 省份
    province = Field()
    # 城市
    city = Field()
    # 小区名字
    name = Field()
    # 几室几厅
    rooms = Field()
    # 层
    floor = Field()
    # 朝向
    toward = Field()
    # 年代
    year = Field()
    # 地址
    address = Field()
    # 建筑面积
    area = Field()
    # 总价
    price = Field()
    # 单价
    unit = Field()
    # 详情页url
    origin_url = Field()

settings.py文件

ROBOTSTXT_OBEY = False

DOWNLOAD_DELAY = 1

from fake_useragent import UserAgent
ua = UserAgent().random

DEFAULT_REQUEST_HEADERS = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',
  'User-Agent':ua
}

ITEM_PIPELINES = {
 'fang.pipelines.FangPipeline': 300,
  'fang.pipelines.MongoPipeline': 400,
}

MONGO_URI = 'localhost'
MONGO_DB = 'fangtianxia'

pipelines.py文件

from scrapy.exporters import JsonLinesItemExporter

class FangPipeline(object):
    def __init__(self):
        self.newhouse_fp = open('newhouse.json','wb')
        self.esfhouse_fp = open('esfhouse.json','wb')
        self.newhouse_exporter = JsonLinesItemExporter(self.newhouse_fp,ensure_ascii=False)
        self.esfhouse_exporter = JsonLinesItemExporter(self.esfhouse_fp,ensure_ascii=False)

    def process_item(self, item, spider):
        self.newhouse_exporter.export_item(item)
        self.esfhouse_exporter.export_item(item)
        return item

    def close_spider(self,spider):
        self.newhouse_fp.close()
        self.esfhouse_fp.close()



# 保存到mongodb
class MongoPipeline(object):
    def __init__(self,mongo_uri,mongo_db):
        self.mongo_uri = mongo_uri
        self.mongo_db = mongo_db
    @classmethod
    def from_crawler(cls,crawler):
        return cls(
            mongo_uri = crawler.settings.get('MONGO_URI'),
            mongo_db = crawler.settings.get('MONGO_DB')
        )
    def open_spider(self,spider):
        self.client = pymongo.MongoClient(self.mongo_uri)
        self.db = self.client[self.mongo_db]
    def process_item(self,item,spider):
        name = item.__class__.__name__
        self.db[name].insert(dict(item))
        return item
    def close_spider(self,spider):
        self.client.close()

改造成分布式爬虫

首先安装pip install scrapy-redis
要将一个Scrapy项目变成一个Scrapy-redis项目只需修改以下三点就可以了:

  1. 将爬虫的类从 scrapy.Spider 变成 scrapy_redis.spiders.RedisSpider;或者是从 scrapy.CrawlSpider 变成 scrapy_redis.spiders.RedisCrawlSpider。
    拿上面的例子来说就是在 fangtianxia.py文件中
from scrapy_redis.spiders import RedisSpider

class FangtianxiaSpider(RedisSpider):
    name = 'fangtianxia'
    allowed_domains = ['fang.com']
    # start_urls = ['http://www.fang.com/SoufunFamily.htm']
    redis_key = "fang:start_urls"

  1. 将爬虫中的start_urls删掉。增加一个redis_key="xxx"。这个redis_key是为了以后在redis中控制爬虫启动的。爬虫的第一个url,就是在redis中通过这个发送出去的。
  2. 更改scrapy的调度器,用redis实现的调度器。url去重的工作也交由redis完成,爬取的数据共享一下,存储到redis。在配置文件中增加如下配置:
    # Scrapy-Redis相关配置
    # 确保request存储到redis中
    SCHEDULER = "scrapy_redis.scheduler.Scheduler"

    # 确保所有爬虫共享相同的去重指纹
    DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"

    # 设置redis为item pipeline
    ITEM_PIPELINES = {
        'scrapy_redis.pipelines.RedisPipeline': 300
    }

    # 在redis中保持scrapy-redis用到的队列,不会清理redis中的队列,从而可以实现暂停和恢复的功能。
    SCHEDULER_PERSIST = True

    # 设置连接redis信息
    REDIS_HOST = '127.0.0.1'
    REDIS_PORT = 6379

运行爬虫:

  1. 在爬虫服务器上。进入爬虫文件所在的路径,然后输入命令:scrapy runspider [爬虫名字]。
  2. 在Redis服务器上,推入一个开始的url链接:redis-cli> lpush [redis_key] start_url开始爬取。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容