《线性代数应该这样学》课内验证3-线性映射

CHAPTER 3 Linear Maps

  1. Make sure you verify that each of the functions defined below is indeed a linear map:
    • zero: 0 \in \mathcal{L}(V,W) is defined by 0v=0.
    • identity: I \in \mathcal{L}(V,V) is defined by Iv=v.
    • multiplication by x^2: T \in \mathcal{L}(\mathcal{P}(\mathbb{R}),\mathcal{P}(\mathbb{R})) is defined by (Tp)(x)=x^2p(x) for x \in \mathbb{R}.
    • backwar shift: T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}) is defined by T(x_1,x_2,x_3,\cdots)=(x_2,x_3,\cdots).
    • from \mathbb{F}^{n} to \mathbb{F}^{m} : T \in \mathcal{L}(\mathbb{F}^{n}, \mathbb{F}^{m}) is defined by T(x_1, \cdots,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}x_n,\cdots,A_{m,1}x_1+\cdots+A_{m,n}x_n).

Proof

  • zero. Additivity: for all u,v \in V, 0(u+v)=0=0u+0v.

    homogeneity: for all \lambda \in \mathbb{F} and all v \in V, 0(\lambda v)=0=\lambda 0= \lambda 0(v).

  • identity: Additivity: for all u,v \in V, I(u+v)=u+v=I(u)+I(v).

    homogeneity: for all \lambda \in \mathbb{F} and all v \in V, I(\lambda v)=\lambda v=\lambda I(v).

  • multiplication by x^2: Additivity: for all u,v \in \mathcal{P}(\mathbb{R}), T(u+v)(x)=x^2(u+v)=x^2u+x^2v=T(u)+T(v)

    homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathcal{P}(\mathbb{R}), T(\lambda v)(x)=\lambda x^2 v=\lambda T(v).

  • backwar shift: Additivity: for all u,v \in \mathbb{F}^{\infty}, T(u+v)=T((u_1+v_1,u_2+v_2,u_3+v_3,\cdots))=(u_2+v_2,u_3+v_3,\cdots)=(u_2,u_3,\cdots)+(v_2,v_3,\cdots)=T(u)+T(v)

    homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathbb{F}^{\infty}, T(\lambda v)=T((\lambda v_1,\lambda v_2,\lambda v_3,\cdots))=(\lambda v_2,\lambda v_3,\cdots)=\lambda (v_2,v_3,\cdots)=\lambda T(v)

  • from \mathbb{F}^{n} to \mathbb{F}^{m} : Additivity: for all u,v \in \mathbb{F}^{n},
    \begin{align*} T(u+v) &= T(u_1+v_1,\cdots,u_n+v_n)=(A_{1,1}(u_1+v_1)+\cdots+A_{1,n}(u_n+v_n),\cdots,A_{m,1}(u_1+v_1)+\cdots+A_{m,n}(u_n+v_n)) \\ &= (A_{1,1}u_1+\cdots+A_{1,n}u_n+A_{1,1}v_1+\cdots+A_{1,n}v_n , \cdots,A_{m,1}u_1+\cdots+A_{m,n}u_n+A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= (A_{1,1}u_1+\cdots+A_{1,n}u_n ,\cdots , A_{m,1}u_1+\cdots+A_{m,n}u_n)+(A_{1,1}v_1+\cdots+A_{1,n}v_n ,\cdots , A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= T(u)+T(v) \end{align*}
    homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathbb{F}^{n},
    \begin{align*} T(\lambda v)&=T(\lambda v_1+\cdots+\lambda v_n) \\ &= (\lambda A_{1,1}v_1+\cdots+\lambda A_{1,n}v_n ,\cdots , \lambda A_{m,1}v_1+\cdots+\lambda A_{m,n}v_n) \\ &= \lambda (A_{1,1}v_1+\cdots+A_{1,n}v_n ,\cdots , A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= \lambda T(v) \end{align*}

  1. You should verify that ST is indeed a linear map from U to W whenever T \in \mathcal{L}(U,V) and S \in \mathcal{L}(V,W).

Proof Additivity: for all u,v \in U, (ST)(u+v)=S(T(u+v))=S(T(u)+T(v))=S(T(u))+S(T(v))=(ST)(u)+(ST)(v)

homogeneity: for all \lambda \in \mathbb{F} and all u\in U, (ST)(\lambda u)=S(T(\lambda u))=S(\lambda Tu)=\lambda S(Tu)=\lambda (ST)(u)

  1. The reader should verify that \pi is indeed a linear map.

Proof Additivity: for all v,w \in V, \pi (v+w)=(v+w)+U=(v+U)+(w+U)=\pi(v)+\pi(w)

homogeneity: for all \lambda \in \mathbb{F} and all v \in V, \pi (\lambda v)=\lambda v+U=\lambda (v+U)=\lambda \pi(v)

  1. The routine verification that \tilde{T} is linear is left to the reader.

Proof Additivity: for all u,v \in V, \tilde{T}(u+\text{null }T +v+\text{null }T)=T(u+v)=T(u)+T(v)=\tilde{T}(u+\text{null }T)+\tilde{T}(v+\text{null }T)

homogeneity: for all \lambda \in \mathbb{F} and all v \in V, \tilde{T}(\lambda v+\text{null }T)=T(\lambda v)=\lambda T(v)=\lambda \tilde{T}(v+\text{null }T)

  1. You should construct the proof outlined in the paragraph above, even though a slicker proof is presented here. Suppose V is finite-dimensional and U is a subspace of V. Then \dim U + \dim U^0 =\dim V.

Proof Let u_1,\cdots,u_m be a basis of U; thus \dim U =m. The linearly independent list u_1,\cdots,u_m can be extended to a basis u_1,\cdots,u_m,\cdots, u_n of V.

Thus \dim V=n. To complete the proof, we need only show that U^0 is finite-dimensional and \dim U^0=n-m.

Suppose \varphi_1,\cdots , \varphi_m,\cdots,\varphi_n is a basis of V', \varphi \in U^0. We can write
\varphi =c_1\varphi_1+\cdots+c_m\varphi_m+\cdots+c_n\varphi_n
Because u_1 \in U and \varphi \in U^0, we have
0=\varphi(u_1)=(c_1\varphi_1+\cdots+c_m\varphi_m+\cdots+c_n\varphi_n)(u_1)=c_1
Similarly, c_2,\cdots,c_m all are 0. Hence \varphi=c_{m+1}\varphi_{m+1}+\cdots+c_n\varphi_n.

Thus \varphi \in \text{span}(\varphi_{m+1},\cdots,\varphi_n), which shows that U^0 \subset \text{span}(\varphi_{m+1},\cdots,\varphi_n).

Suppose \varphi \in \text{span}(\varphi_{m+1},\cdots,\varphi_n). Then there exist c_{m+1},\cdots,c_n such that \varphi=c_{m+1}\varphi_{m+1}+\cdots+c_n\varphi_n. If (a_1,\cdots,a_m,0,\cdots,0) \in U, then
\varphi(a_1,\cdots,a_m,0,\cdots,0)=0
Thus \varphi \in U^0, which shows that \text{span}(\varphi_{m+1},\cdots,\varphi_n) \subset U^0.

Hence U^0=\text{span}(\varphi_{m+1},\cdots,\varphi_n). We also know that \varphi_{1},\cdots,\varphi_n is a basis of V'. Therefore \varphi_{m+1},\cdots,\varphi_{n} is linearly independent.

Hence it can be a basis of U^0. Thus \dim U^0=n-m.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容