单例模式

单例模式的应用场景

单例模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例构造方法私有化并提供一个全局的访问点。单例模式是创建型模式。在 J2EE 标准中,ServletContext、ServletContextConfig 等;在 Spring 框架应用中ApplicationContext;数据库的连接池也都是单例形式。

饿汉式单例

//第一种写法
public class HungrySingleton {
    private static final HungrySingleton HUNGRY_SINGLETON = new HungrySingleton();

    private HungrySingleton(){}

    public static HungrySingleton getInstance() { return HUNGRY_SINGLETON; }
}
//第二种写法
public class HungryStaticSingleton {
    private static final HungryStaticSingleton HUNGRY_SINGLETON;

    static {
        HUNGRY_SINGLETON = new HungryStaticSingleton();
    }

    private HungryStaticSingleton(){}

    public static HungryStaticSingleton getInstance() { return HUNGRY_SINGLETON; }
}

优点:执行效率高,性能高,没有任何锁

缺点:某些情况下,可能会造成内存的浪费

懒汉式单例

public class LazySingleton {

    private static LazySingleton LAZY_SINGLETON;

    private LazySingleton(){}

    public static LazySingleton getInstance() {
        if (LAZY_SINGLETON == null) {
            LAZY_SINGLETON = new LazySingleton();
        }
        return LAZY_SINGLETON;
    }
}

优点:需要用时初始化,节省了内存浪费

缺点:线程不安全

public class LazySyncSingleton {
    private static LazySyncSingleton LAZY_SINGLETON;

    private LazySyncSingleton(){}

    public synchronized static LazySyncSingleton getInstance() {
        if (LAZY_SINGLETON == null) {
            LAZY_SINGLETON = new LazySyncSingleton();
        }
        return LAZY_SINGLETON;
    }
}

优点:需要用时初始化,节省了内存浪费,线程安全

缺点:性能低

双重检查锁单例

public class LazyDoubleCheckSyncSingleton {
    private volatile static LazyDoubleCheckSyncSingleton LAZY_SINGLETON;

    private LazyDoubleCheckSyncSingleton(){}

    public synchronized static LazyDoubleCheckSyncSingleton getInstance() {
        //检查是否要阻塞
        if (LAZY_SINGLETON == null) {
            synchronized (LazyDoubleCheckSyncSingleton.class) {
                //检查是否要重新创建实例
                if (LAZY_SINGLETON == null) {
                    LAZY_SINGLETON = new LazyDoubleCheckSyncSingleton();
                }
            }
        }
        return LAZY_SINGLETON;
    }
}

优点:性能高,线程安全

缺点:可读性有些影响

静态内部类

public class LazyStaticInnerSingleton {

    private LazyStaticInnerSingleton(){}

    public static LazyStaticInnerSingleton getInstance() {
        return LazyHolder.LAZY_STATIC_INNER_SINGLETON;
    }

    public static class LazyHolder{
        public static final LazyStaticInnerSingleton LAZY_STATIC_INNER_SINGLETON = new LazyStaticInnerSingleton();
    }
}

咋一看以为这是饿汉,其实还是懒汉。区别在于内部类加载方式 LazyStaticInnerSingleton.class LazyStaticInnerSingleton$LazyHolder.class

优点:写法优雅,利用了Java本身的语法特点,性能高,避免了内存浪费

缺点:能够被反射破坏

破坏单例

public class ReflectTest {
    public static void main(String[] args) {
        try {
            Class<?> clazz = LazyStaticInnerSingleton.class;
            Constructor<?> c = clazz.getDeclaredConstructor(null);
            c.setAccessible(true);
            Object o1 = c.newInstance();
            Object o2 = c.newInstance();
            System.out.println(o1);
            System.out.println(o2);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
//打印结果
spring.note.designpattern.singlepattern.lazy.LazyStaticInnerSingleton@1540e19d
spring.note.designpattern.singlepattern.lazy.LazyStaticInnerSingleton@677327b6

从打印结果来看确实创建出了两个对象,并且跳过了私有构造方法

解决办法

    private LazyStaticInnerSingleton(){
        throw new RuntimeException("不允许非法创建对象!");
    }
    //打印结果
    java.lang.reflect.InvocationTargetException
    at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
    at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
    at spring.note.designpattern.singlepattern.lazy.ReflectTest.main(ReflectTest.java:15)
Caused by: java.lang.RuntimeException: 不允许非法创建对象!
    at spring.note.designpattern.singlepattern.lazy.LazyStaticInnerSingleton.<init>(LazyStaticInnerSingleton.java:10)
    ... 5 more

在私有构造方法直接抛出异常。反射创建对象时就抛出了异常

注册时单例

public enum EnumSingleton {
    INSTANCE;

    public static EnumSingleton getInstance() {
        return INSTANCE;
    }
}

尝试用反射进行破坏

public class EnumSingletonTest {

    public static void main(String[] args) {
        try {
            Class clazz = EnumSingleton.class;
            Constructor constructor = clazz.getDeclaredConstructor(String.class, int.class);
            System.out.println(constructor);
            constructor.setAccessible(true);
            constructor.newInstance();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
//控制台结果
private spring.note.designpattern.singlepattern.register.EnumSingleton(java.lang.String,int)
java.lang.IllegalArgumentException: Cannot reflectively create enum objects
    at java.lang.reflect.Constructor.newInstance(Constructor.java:417)
    at spring.note.designpattern.singlepattern.register.EnumSingletonTest.main(EnumSingletonTest.java:17)

提示无法被反射创建enmu对象,跟着错误提示看看jdk源码

    @CallerSensitive
    public T newInstance(Object ... initargs)
        throws InstantiationException, IllegalAccessException,
               IllegalArgumentException, InvocationTargetException
    {
        if (!override) {
            if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
                Class<?> caller = Reflection.getCallerClass();
                checkAccess(caller, clazz, null, modifiers);
            }
        }
        //修饰符如果是 枚举的话,直接抛出了异常
        if ((clazz.getModifiers() & Modifier.ENUM) != 0)
            throw new IllegalArgumentException("Cannot reflectively create enum objects");
        ConstructorAccessor ca = constructorAccessor;   // read volatile
        if (ca == null) {
            ca = acquireConstructorAccessor();
        }
        @SuppressWarnings("unchecked")
        T inst = (T) ca.newInstance(initargs);
        return inst;
    }

ThreadLocal单例

public class ThreadLocalSingleton {
    public static final ThreadLocal<ThreadLocalSingleton> instance = new ThreadLocal<ThreadLocalSingleton>(){
        @Override
        protected ThreadLocalSingleton initialValue() {
            return new ThreadLocalSingleton();
        }
    };

    private ThreadLocalSingleton (){}

    public static ThreadLocalSingleton getInstance() {
        return instance.get();
    }
}

ThreadLocal 是线程安全的单例,每个线程之间获取的对象地址都会不同。来一段代码测试下

public class ExectorThread implements Runnable{
    public void run() {
        ThreadLocalSingleton instance = ThreadLocalSingleton.getInstance();
        System.out.println("线程名称:" + Thread.currentThread().getName() + "," + instance);
    }
}

public class ThreadLocalSingletonTest {

    public static void main(String[] args) {
        System.out.println(ThreadLocalSingleton.getInstance());
        System.out.println(ThreadLocalSingleton.getInstance());

        Thread thread1 = new Thread(new ExectorThread());
        Thread thread2 = new Thread(new ExectorThread());
        thread1.start();
        thread2.start();

        System.out.println("end");
    }

}

//输出结果:
spring.note.designpattern.singlepattern.threadlocal.ThreadLocalSingleton@1540e19d
spring.note.designpattern.singlepattern.threadlocal.ThreadLocalSingleton@1540e19d
end
线程名称:Thread-0,spring.note.designpattern.singlepattern.threadlocal.ThreadLocalSingleton@5d84cea9
线程名称:Thread-1,spring.note.designpattern.singlepattern.threadlocal.ThreadLocalSingleton@570ead58

可以看到主线程中两次获取的一致。但是几个线程之间获取的对象都不一样。ThreadLocal特性是保证当前线程内的对象为单例。所以该项结果也是很正常的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。