基于Spark的电影推荐系统(推荐系统~7)

第四部分-推荐系统-实时推荐

  • <font color=#00cc66 size=4 face="黑体"> 本模块基于第4节得到的模型,开始为用户做实时推荐,推荐用户最有可能喜爱的5部电影。</font>

说明几点

1.数据来源是 testData 测试集的数据。这里面的用户,可能存在于训练集中,也可能是新用户。因此,这里要做处理。

  1. SparkStreaming + kakfa


    在这里插入图片描述

开始Coding

步骤一:在streaming 包下,新建PopularMovies2


package com.csylh.recommend.streaming

import com.csylh.recommend.config.AppConf
import org.apache.spark.sql.SaveMode

/**
  * Description: 个性化推荐
  *
  * @Author: 留歌36
  * @Date: 2019/10/18 17:42
  */
object PopularMovies2 extends AppConf{
    def main(args: Array[String]): Unit = {
        val movieRatingCount = spark.sql("select count(*) c, movieid from trainingdata group by movieid order by c")
        // 前5部进行推荐
        val Top5Movies = movieRatingCount.limit(5)

        Top5Movies.registerTempTable("top5")

        val top5DF = spark.sql("select a.title from movies a join top5 b on a.movieid=b.movieid")

        // 把数据写入到HDFS上
        top5DF.write.mode(SaveMode.Overwrite).parquet("/tmp/top5DF")

        // 将数据从HDFS加载到Hive数据仓库中去
        spark.sql("drop table if exists top5DF")
        spark.sql("create table if not exists top5DF(title string) stored as parquet")
        spark.sql("load data inpath '/tmp/top5DF' overwrite into table top5DF")

        // 最终表里应该是5部推荐电影的名称
    }
}


步骤二:在streaming 包下,新建SparkDirectStreamApp

package com.csylh.recommend.streaming

import com.csylh.recommend.config.AppConf
import kafka.serializer.StringDecoder
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * Description:
  *
  * @Author: 留歌36
  * @Date: 2019/10/18 16:33
  */
object SparkDirectStreamApp extends AppConf{
    def main(args:Array[String]): Unit ={
      val ssc = new StreamingContext(sc, Seconds(5))

      val topics = "movie_topic".split(",").toSet

      val kafkaParams = Map[String, String](
        "metadata.broker.list"->"hadoop001:9093,hadoop001:9094,hadoop001:9095",
        "auto.offset.reset" -> "largest" //smallest :从头开始 largest:最新
      )
      // Direct 模式:SparkStreaming 主动去Kafka中pull拉数据
      val modelPath = "/tmp/BestModel/0.8521581387523667"
      val stream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)

      def exist(u: Int): Boolean = {
        val trainingdataUserIdList = spark.sql("select distinct(userid) from trainingdata")
          .rdd
          .map(x => x.getInt(0))
          .collect()  // RDD[row] ==> RDD[Int]

        trainingdataUserIdList.contains(u)
      }

      // 为没有登录的用户推荐电影的策略:
      // 1.推荐观看人数较多的电影,采用这种策略
      // 2.推荐最新的电影
      val defaultrecresult = spark.sql("select * from top5DF").rdd.toLocalIterator

      // 创建SparkStreaming接收kafka消息队列数据的2种方式
      // 一种是Direct approache,通过SparkStreaming自己主动去Kafka消息队
      // 列中查询还没有接收进来的数据,并把他们拉pull到sparkstreaming中。

      val model = MatrixFactorizationModel.load(ssc.sparkContext, modelPath)
      val messages = stream.foreachRDD(rdd=> {

              val userIdStreamRdd = rdd.map(_._2.split("|")).map(x=>x(1)).map(_.toInt)

              val validusers = userIdStreamRdd.filter(userId => exist(userId))
              val newusers = userIdStreamRdd.filter(userId => !exist(userId))

              // 采用迭代器的方式来避开对象不能序列化的问题。
              // 通过对RDD中的每个元素实时产生推荐结果,将结果写入到redis,或者其他高速缓存中,来达到一定的实时性。
              // 2个流的处理分成2个sparkstreaming的应用来处理。
              val validusersIter = validusers.toLocalIterator
              val newusersIter = newusers.toLocalIterator

              while (validusersIter.hasNext) {
                val u= validusersIter.next
                println("userId"+u)
                val recresult = model.recommendProducts(u, 5)
                val recmoviesid = recresult.map(_.product)
                println("我为用户" + u + "【实时】推荐了以下5部电影:")
                for (i <- recmoviesid) {
                  val moviename = spark.sql(s"select title from movies where movieId=$i").first().getString(0)
                  println(moviename)
                }
              }

              while (newusersIter.hasNext) {
                println("*新用户你好*以下电影为您推荐below movies are recommended for you :")
                for (i <- defaultrecresult) {
                  println(i.getString(0))
                }
              }


     })
      ssc.start()
      ssc.awaitTermination()
    }
}

步骤三:将创建的项目进行打包上传到服务器
mvn clean package -Dmaven.test.skip=true

步骤四:先编写个性化推荐代码 shell 执行脚本

[root@hadoop001 ml]# vim PopularMovies2.sh 
export HADOOP_CONF_DIR=/root/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop

$SPARK_HOME/bin/spark-submit \
--class com.csylh.recommend.streaming.PopularMovies2 \
--master spark://hadoop001:7077 \
--name PopularMovies2 \
--driver-memory 10g \
--executor-memory 5g \
/root/data/ml/movie-recommend-1.0.jar

步骤五:执行sh PopularMovies2.sh

确保:

[root@hadoop001 ml]# spark-sql
19/10/20 22:59:28 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark master: local[*], Application Id: local-1571583574311
spark-sql> show tables;
default links   false
default movies  false
default ratings false
default tags    false
default testdata    false
default top5df  false
default trainingdata    false
default trainingdataasc false
default trainingdatadesc    false
Time taken: 2.232 seconds, Fetched 9 row(s)
spark-sql> select * from top5df;
Follow the Bitch (1996)
Radio Inside (1994)
Faces of Schlock (2005)
Mág (1988)
"Son of Monte Cristo
Time taken: 1.8 seconds, Fetched 5 row(s)
spark-sql> 

步骤六:再编写model实时推荐代码 shell 执行脚本

export HADOOP_CONF_DIR=/root/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop

$SPARK_HOME/bin/spark-submit \
--class com.csylh.recommend.streaming.SparkDirectStreamApp \
--master spark://hadoop001:7077 \
--name SparkDirectStreamApp \
--driver-memory 10g \
--executor-memory 5g \
--total-executor-cores 10 \
--jars /root/app/kafka_2.11-1.1.1/libs/kafka-clients-1.1.1.jar \
--packages "mysql:mysql-connector-java:5.1.38,org.apache.spark:spark-streaming-kafka-0-8_2.11:2.4.2" \
/root/data/ml/movie-recommend-1.0.jar

步骤七:sh SparkDirectStreamApp.sh

// TODO...

有任何问题,欢迎留言一起交流~~
更多文章:基于Spark的电影推荐系统:https://blog.csdn.net/liuge36/column/info/29285

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容