leakcanary

这篇文章中介绍了内存泄露检测的原理:Reference、ReferenceQueue

这篇文章有分析流程

三个核心知识点

1、Reference与ReferenceQueue
@Test
    public void testQueue()
    {
        A a=new A();
        ReferenceQueue queue=new ReferenceQueue();
        WeakReference reference=new WeakReference(a,queue);

        a=null;
        Runtime.getRuntime().gc();
        System.runFinalization();

        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        Reference poll=null;
        while ((poll=queue.poll())!=null)
        {
            System.out.println(poll.toString());
        }
    }

输出结果:


queue中有数据

修改代码:

//a=null;

测试结果:


queue中无数据

结论:

如果一个对象只是弱可达的(就是说没有强引用指向它,只有弱引用指向它,那么在gc时这个对象就是可回收的),那么在gc时,这个对象就会被回收,并且会将这个对象的弱引用放到queue中

leakcanary核心原理

以Activity为例,在Activity的onDestroy生命周期方法中,首先为这个Activity生成一个唯一的uuid,然后将这个uuid添加到一个set集合中,然后为这个Activity新建一个含有queue的WeakReference,那么如果说发生gc时,这个Activity被回收了,那么这个queue中就有数据,如果没有被回收,那么这个queue中就没有数据,这个Activity可能就发生了内存泄露;
下一步就是判断有没有发生内存泄露,具体做法是遍历这个queue然后根据对应关系移除set中的元素

while ((ref = (KeyedWeakReference) queue.poll()) != null) {
      retainedKeys.remove(ref.key);
    }

遍历完成之后,set中存在的元素就是可能发生内存泄露的对象,为了判断的准确性;第三部再次调用gc;第四步再次重复上面的循环;最后如果说这个set集合中还存在这个reference的可以那么就可以确定这个对象发生了内存泄露

2、如何统一监测Activity、Fragment、普通对象的生命周期

Activity

application.registerActivityLifecycleCallbacks(activityRefWatcher.lifecycleCallbacks);
 private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
      new ActivityLifecycleCallbacksAdapter() {
        @Override public void onActivityDestroyed(Activity activity) {
          refWatcher.watch(activity);
        }
      };

Fragment

 application.registerActivityLifecycleCallbacks(helper.activityLifecycleCallbacks);
private final Application.ActivityLifecycleCallbacks activityLifecycleCallbacks =
        new ActivityLifecycleCallbacksAdapter() {
          @Override public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
            for (FragmentRefWatcher watcher : fragmentRefWatchers) {
              watcher.watchFragments(activity);
            }
          }
        };
private final FragmentManager.FragmentLifecycleCallbacks fragmentLifecycleCallbacks =
      new FragmentManager.FragmentLifecycleCallbacks() {

        @Override public void onFragmentViewDestroyed(FragmentManager fm, Fragment fragment) {
          View view = fragment.getView();
          if (view != null) {
            refWatcher.watch(view);
          }
        }

        @Override
        public void onFragmentDestroyed(FragmentManager fm, Fragment fragment) {
          refWatcher.watch(fragment);
        }
      };

  @Override public void watchFragments(Activity activity) {
    FragmentManager fragmentManager = activity.getFragmentManager();
    fragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true);
  }

图片地址:https://juejin.im/post/5c72af2af265da2de165a624

image.png
根据源码leakcanary只能 检测Activity、Fragment的泄露情况,无法检测其他的对象
3、Runtime.getRuntime().gc()与System.gc()

区别

    public static void gc() {
        boolean shouldRunGC;
        synchronized (LOCK) {
            shouldRunGC = justRanFinalization;
            if (shouldRunGC) {
                justRanFinalization = false;
            } else {
                runGC = true;
            }
        }
        if (shouldRunGC) {
            Runtime.getRuntime().gc();
        }
    }

justRanFinalization这个值是调用runFinalization方法来设置的

 public static void runFinalization() {
        boolean shouldRunGC;
        synchronized (LOCK) {
            shouldRunGC = runGC;
            runGC = false;
        }
        if (shouldRunGC) {
            Runtime.getRuntime().gc();
        }
        Runtime.getRuntime().runFinalization();
        synchronized (LOCK) {
            justRanFinalization = true;
        }
    }

所以单纯调用System.gc()是不会触发Runtime.getRuntime().gc()的。但是会把这次尝试纪录下来,等到下次调用System.runFinalization()时,会先执行这个Runtime.getRuntime().gc()。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容