极大似然估计
在统计学中,最大似然估计(英语:maximum likelihood estimation,缩写为MLE),也称最大概似估计,是用来估计一个概率模型的参数的一种方法。(摘自维基百科)。
What?啥意思?
举个生活中最简单的栗子。
假设袋子中有黑白两种颜色的100个球,又放回的取10次球,其中7次是黑球,3次是白球,你猜袋子里面的黑球占多少?
我想你肯定会猜有70个黑球,30个白球。但是为什么?有什么依据吗?我们来推导一下
假设取出黑球的概率是p,取出白球的概率是(1-p)。
p(7黑3白)=p^7 * (1-p)^3
极大似然估计的意思就是当我的黑白球比例是多少的时候,最有可能发生7黑3白这种事件呢?
若max p(7黑3白),求导等于0即可
p'(7黑3白)=7 * p^6 * (1-p)^3 + (p^7) * 3 * (1-p)^2=0
求得 p=0.7 黑球70个,白球30个 拿走不谢
极大似然估计与最小二乘法关系
最小二乘法损失函数是:
下面通过公式推导来证明当误差项ξ~N(0,σ^2)时,极大似然估计等同于最小二乘法
总结
极大似然估计是根据数据估计模型参数的一种方法,这种方法的原理就是如何确定模型参数最有可能得到当前事件,当数据误差项服从标准正态分布时,其结果和最小二乘法一致