【Java 并发编程】Java 创建线程池的正确姿势: Executors 和 ThreadPoolExecutor 详解

我们先看 Java 开发手册上说的:

我们可以看一下源码:


这里的 ThreadPoolExecutor 的构造函数如下:

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory and rejected execution handler.
     * It may be more convenient to use one of the {@link Executors} factory
     * methods instead of this general purpose constructor.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

参数说明:

RejectedExecutionHandler

其中,RejectedExecutionHandler(拒绝策略)指的是当阻塞队列满了之后,线程数量也达到最大值,无法再接受新任务的时候,可以根据饱和策略对新任务作出相应的处理。原生JDK线程池提供了4种饱和策略:

AbortPolicy:直接抛出异常。
CallerRunsPolicy:只用调用者所在线程来运行任务。
DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
DiscardPolicy:不处理,丢弃掉

除此之外,我们还可以自定义饱和策略满足业务场景的需求,比如:

public class LogPolicy implements RejectedExecutionHandler {
    @Override
    public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
        if (!executor.isShutdown()) {
            // 持久化不能处理的任务
            insertToDB(r);
        }
    }
}

以上是ThreadPoolExecutor构造函数的参数详细解析和作用。

类图结构:

Executors的创建线程池的方法,创建出来的线程池都实现了ExecutorService接口。常用方法有以下几个:

newFiexedThreadPool(int Threads):创建固定数目线程的线程池。

newCachedThreadPool():创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果没有可用的线程,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。

newSingleThreadExecutor()创建一个单线程化的Executor。

newScheduledThreadPool(int corePoolSize) 创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。

类看起来功能还是比较强大的,又用到了工厂模式、又有比较强的扩展性,重要的是用起来还比较方便,如:

ExecutorService executor = Executors.newFixedThreadPool(nThreads) ;

即可创建一个固定大小的线程池。

执行原理

线程池执行器将会根据corePoolSize和maximumPoolSize自动地调整线程池大小。

当在execute(Runnable)方法中提交新任务并且少于corePoolSize线程正在运行时,即使其他工作线程处于空闲状态,也会创建一个新线程来处理该请求。 如果有多于corePoolSize但小于maximumPoolSize线程正在运行,则仅当队列已满时才会创建新线程。 通过设置corePoolSize和maximumPoolSize相同,您可以创建一个固定大小的线程池。 通过将maximumPoolSize设置为基本上无界的值,例如Integer.MAX_VALUE,您可以允许池容纳任意数量的并发任务。 通常,核心和最大池大小仅在构建时设置,但也可以使用setCorePoolSize和setMaximumPoolSize进行动态更改。

这段话详细了描述了线程池对任务的处理流程,这里用个图总结一下

使用 Executors 创建四种类型的线程池

newCachedThreadPool是Executors工厂类的一个静态函数,用来创建一个可以无限扩大的线程池。

而Executors工厂类一共可以创建四种类型的线程池,通过Executors.newXXX即可创建。下面就分别都介绍一下。

1. FixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads){
    return new ThreadPoolExecutor(nThreads,nThreads,0L,TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}
  • 它是一种固定大小的线程池;
  • corePoolSize和maximunPoolSize都为用户设定的线程数量nThreads;
  • keepAliveTime为0,意味着一旦有多余的空闲线程,就会被立即停止掉;但这里keepAliveTime无效;
  • 阻塞队列采用了LinkedBlockingQueue,它是一个无界队列;
  • 由于阻塞队列是一个无界队列,因此永远不可能拒绝任务;
  • 由于采用了无界队列,实际线程数量将永远维持在nThreads,因此maximumPoolSize和keepAliveTime将无效。

2. CachedThreadPool

public static ExecutorService newCachedThreadPool(){
    return new ThreadPoolExecutor(0,Integer.MAX_VALUE,60L,TimeUnit.MILLISECONDS,new SynchronousQueue<Runnable>());
}
  • 它是一个可以无限扩大的线程池;
  • 它比较适合处理执行时间比较小的任务;
  • corePoolSize为0,maximumPoolSize为无限大,意味着线程数量可以无限大;
  • keepAliveTime为60S,意味着线程空闲时间超过60S就会被杀死;
  • 采用SynchronousQueue装等待的任务,这个阻塞队列没有存储空间,这意味着只要有请求到来,就必须要找到一条工作线程处理他,如果当前没有空闲的线程,那么就会再创建一条新的线程。

3. SingleThreadExecutor

public static ExecutorService newSingleThreadExecutor(){
    return new ThreadPoolExecutor(1,1,0L,TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}
  • 它只会创建一条工作线程处理任务;
  • 采用的阻塞队列为LinkedBlockingQueue;

4. ScheduledThreadPool

它用来处理延时任务或定时任务。

  • 它接收SchduledFutureTask类型的任务,有两种提交任务的方式:
  1. scheduledAtFixedRate
  2. scheduledWithFixedDelay
  • SchduledFutureTask接收的参数:
  1. time:任务开始的时间
  2. sequenceNumber:任务的序号
  3. period:任务执行的时间间隔
  • 它采用DelayQueue存储等待的任务
  • DelayQueue内部封装了一个PriorityQueue,它会根据time的先后时间排序,若time相同则根据sequenceNumber排序;
  • DelayQueue也是一个无界队列;
  • 工作线程的执行过程:
  • 工作线程会从DelayQueue取已经到期的任务去执行;
  • 执行结束后重新设置任务的到期时间,再次放回DelayQueue

Executors存在什么问题

在阿里巴巴Java开发手册中提到,使用Executors创建线程池可能会导致OOM(OutOfMemory ,内存溢出),但是并没有说明为什么,那么接下来我们就来看一下到底为什么不允许使用Executors?

我们先来一个简单的例子,模拟一下使用Executors导致OOM的情况。

/**
 * @author Hollis
 */
public class ExecutorsDemo {
    private static ExecutorService executor = Executors.newFixedThreadPool(15);
    public static void main(String[] args) {
        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            executor.execute(new SubThread());
        }
    }
}

class SubThread implements Runnable {
    @Override
    public void run() {
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            //do nothing
        }
    }
}

通过指定JVM参数:-Xmx8m -Xms8m 运行以上代码,会抛出OOM:

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
    at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
    at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
以上代码指出,ExecutorsDemo.java的第16行,就是代码中的executor.execute(new SubThread());。

Executors为什么存在缺陷

通过上面的例子,我们知道了Executors创建的线程池存在OOM的风险,那么到底是什么原因导致的呢?我们需要深入Executors的源码来分析一下。

其实,在上面的报错信息中,我们是可以看出蛛丝马迹的,在以上的代码中其实已经说了,真正的导致OOM的其实是LinkedBlockingQueue.offer方法。

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
    at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
    at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)

如果读者翻看代码的话,也可以发现,其实底层确实是通过LinkedBlockingQueue实现的:

public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());

如果读者对Java中的阻塞队列有所了解的话,看到这里或许就能够明白原因了。

Java中的BlockingQueue主要有两种实现,分别是ArrayBlockingQueue 和 LinkedBlockingQueue。

ArrayBlockingQueue是一个用数组实现的有界阻塞队列,必须设置容量。

LinkedBlockingQueue是一个用链表实现的有界阻塞队列,容量可以选择进行设置,不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。

这里的问题就出在:不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。也就是说,如果我们不设置LinkedBlockingQueue的容量的话,其默认容量将会是Integer.MAX_VALUE。

而newFixedThreadPool中创建LinkedBlockingQueue时,并未指定容量。此时,LinkedBlockingQueue就是一个无边界队列,对于一个无边界队列来说,是可以不断的向队列中加入任务的,这种情况下就有可能因为任务过多而导致内存溢出问题。

上面提到的问题主要体现在newFixedThreadPool和newSingleThreadExecutor两个工厂方法上,并不是说newCachedThreadPool和newScheduledThreadPool这两个方法就安全了,这两种方式创建的最大线程数可能是Integer.MAX_VALUE,而创建这么多线程,必然就有可能导致OOM。

创建线程池的正确姿势

避免使用Executors创建线程池,主要是避免使用其中的默认实现,那么我们可以自己直接调用ThreadPoolExecutor的构造函数来自己创建线程池。在创建的同时,给BlockQueue指定容量就可以了。

private static ExecutorService executor = new ThreadPoolExecutor(10, 10,
        60L, TimeUnit.SECONDS,
        new ArrayBlockingQueue(10));

这种情况下,一旦提交的线程数超过当前可用线程数时,就会抛出java.util.concurrent.RejectedExecutionException,这是因为当前线程池使用的队列是有边界队列,队列已经满了便无法继续处理新的请求。但是异常(Exception)总比发生错误(Error)要好。

除了自己定义ThreadPoolExecutor外。还有其他方法。这个时候第一时间就应该想到开源类库,如apache和guava等。

作者推荐使用guava提供的ThreadFactoryBuilder来创建线程池。

public class ExecutorsDemo {

    private static ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
        .setNameFormat("demo-pool-%d").build();

    private static ExecutorService pool = new ThreadPoolExecutor(5, 200,
        0L, TimeUnit.MILLISECONDS,
        new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) {

        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            pool.execute(new SubThread());
        }
    }
}

通过上述方式创建线程时,不仅可以避免OOM的问题,还可以自定义线程名称,更加方便的出错的时候溯源。

参考资料

https://www.zhihu.com/question/23212914
https://www.zhihu.com/question/23212914/answer/245992718
https://www.jianshu.com/p/c41e942bcd64
https://www.jianshu.com/p/5c688d14188a


Kotlin开发者社区

专注分享 Java、 Kotlin、Spring/Spring Boot、MySQL、redis、neo4j、NoSQL、Android、JavaScript、React、Node、函数式编程、编程思想、"高可用,高性能,高实时"大型分布式系统架构设计主题。

High availability, high performance, high real-time large-scale distributed system architecture design

分布式框架:Zookeeper、分布式中间件框架等
分布式存储:GridFS、FastDFS、TFS、MemCache、redis等
分布式数据库:Cobar、tddl、Amoeba、Mycat
云计算、大数据、AI算法
虚拟化、云原生技术
分布式计算框架:MapReduce、Hadoop、Storm、Flink等
分布式通信机制:Dubbo、RPC调用、共享远程数据、消息队列等
消息队列MQ:Kafka、MetaQ,RocketMQ
怎样打造高可用系统:基于硬件、软件中间件、系统架构等一些典型方案的实现:HAProxy、基于Corosync+Pacemaker的高可用集群套件中间件系统
Mycat架构分布式演进
大数据Join背后的难题:数据、网络、内存和计算能力的矛盾和调和
Java分布式系统中的高性能难题:AIO,NIO,Netty还是自己开发框架?
高性能事件派发机制:线程池模型、Disruptor模型等等。。。

合抱之木,生于毫末;九层之台,起于垒土;千里之行,始于足下。不积跬步,无以至千里;不积小流,无以成江河。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355