10X单细胞(10X空间转录组)轨迹分析(拟时分析)之VECTOR

hello,大家好,今天分享一个轨迹分析的软件VECTOR,文章在Unsupervised Inference of Developmental Directions for Single Cells Using VECTOR,2020年8月发表于Cell Report,影响因子8.1分,关于轨迹分析的软件太多了,我们这次来看一看示例代码

Unsupervised Inference of Developmental Directions for Single Cells

Step 1. Please prepare a Seurat object with UMAP and 150 PCs.(这个简单,大家用Seurat分析的时候,应该都是这样的结果)。

简单回顾一下Seurat分析

library(Seurat)
# DATA: Expression matrix. Rownames are gene names. Colnames are cell names.
pbmc <- CreateSeuratObject(counts = DATA, project = "pbmc3k", min.cells = 0, min.features = 0)
pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)

pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 5000)
all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc),npcs = 150)
pbmc <- RunUMAP(pbmc, dims = 1:50)
DimPlot(pbmc, reduction = "umap")
saveRDS(pbmc,file='pbmc.RDS')

Step 2. Get UMAP and PCs from Seurat3 object. (pbmc: a Seurat object):(这个也很简单):

VEC = pbmc@reductions$umap@cell.embeddings
rownames(VEC) = colnames(pbmc)
PCA = pbmc@reductions$pca@cell.embeddings

source('https://raw.githubusercontent.com/jumphone/Vector/master/Vector.R')

# Remove quantile-based colinearity among PCs (new feature in VECTOR 0.0.3):   
PCA=vector.rankPCA(PCA)

Step 3. Use VECTOR:

source('https://raw.githubusercontent.com/jumphone/Vector/master/Vector.R')

# Define pixel
OUT=vector.buildGrid(VEC, N=30,SHOW=TRUE)

# Build network
OUT=vector.buildNet(OUT, CUT=1, SHOW=TRUE)

# Calculate Quantile Polarization (QP) score
OUT=vector.getValue(OUT, PCA, SHOW=TRUE)

# Get pixel's QP score
OUT=vector.gridValue(OUT,SHOW=TRUE)

# Find starting point
OUT=vector.autoCenter(OUT,UP=0.9,SHOW=TRUE)

# Infer vector
OUT=vector.drawArrow(OUT,P=0.9,SHOW=TRUE, COL=OUT$COL, SHOW.SUMMIT=TRUE)

# OUT$P.PS : Peseudotime Score (PS) of each cell
图片.png
这个结果跟RNA Velocyto的结果很像。

Additional function 1: Change QP score to a given gene's expression value (e.g. Nes):

NES.EXP = pbmc@assays$RNA@data[which(rownames(pbmc) =='Nes'),]
OUT=vector.buildGrid(VEC, N=30,SHOW=TRUE)
OUT=vector.buildNet(OUT, CUT=1, SHOW=TRUE)
OUT=vector.getValue(OUT, PCA, SHOW=TRUE)

OUT$VALUE=NES.EXP

OUT=vector.showValue(OUT)
OUT=vector.gridValue(OUT, SHOW=TRUE)
OUT=vector.autoCenter(OUT,UP=0.9,SHOW=TRUE)
OUT=vector.drawArrow(OUT,P=0.9,SHOW=TRUE, COL=OUT$COL)
图片.png

看起来很不错。

Additional function 2: Manually select starting point:(人为指定起始位点

OUT=vector.buildGrid(VEC, N=30,SHOW=TRUE)
OUT=vector.buildNet(OUT, CUT=1, SHOW=TRUE)
OUT=vector.getValue(OUT, PCA, SHOW=TRUE)
OUT=vector.gridValue(OUT,SHOW=TRUE)

OUT=vector.selectCenter(OUT)

OUT=vector.drawArrow(OUT,P=0.9,SHOW=TRUE, COL=OUT$COL)
图片.png

Additional function 3: Manually select region of interest:(选择感兴趣的区域)

OUT=vector.buildGrid(VEC, N=30,SHOW=TRUE)
OUT=vector.buildNet(OUT, CUT=1, SHOW=TRUE)
OUT=vector.getValue(OUT, PCA, SHOW=TRUE)
OUT=vector.gridValue(OUT,SHOW=TRUE)
OUT=vector.autoCenter(OUT,UP=0.9,SHOW=TRUE)
OUT=vector.drawArrow(OUT,P=0.9,SHOW=TRUE, COL=OUT$COL)

#######################
OUT=vector.reDrawArrow(OUT, COL=OUT$COL)
OUT=vector.selectRegion(OUT)

#######################
SELECT_PS=OUT$SELECT_PS               #Peseudotime Score (PS) of selected cells
SELECT_INDEX=OUT$SELECT_INDEX         #Index of selected cells in the expression matrix 
SELECT_COL=OUT$COL[OUT$SELECT_INDEX]  #Colors

#######################
# Identify development related genes
EXP=as.matrix(pbmc@assays$RNA@data)[which(rownames(pbmc) %in% VariableFeatures(pbmc)),SELECT_INDEX]
COR=c()
i=1
while(i<=nrow(EXP)){
    this_cor=cor(SELECT_PS, EXP[i,],method='spearman')
    COR=c(COR,this_cor)
    if(i %%100==1){print(i)}
    i=i+1}
names(COR)=rownames(EXP)
head(sort(COR),n=10)     #Decreasing (top 10)
tail(sort(COR),n=10)     #Increasing (top 10) 

# Select one gene to draw figure
show_gene=names(head(sort(COR),n=10))[1]
show_gene.exp=EXP[which(rownames(EXP)==show_gene),]

# Smooth expression value along pesudotime order (optional)
show_gene.exp[order(SELECT_PS)]=smooth.spline(show_gene.exp[order(SELECT_PS)], df=5)$y    

# Draw figure
plot(jitter(SELECT_PS), show_gene.exp, pch=16,col=SELECT_COL, ylab=show_gene,xlab='PS')
show_gene.fit=lm(show_gene.exp~SELECT_PS)
abline(show_gene.fit,col='black',lwd=1)
图片.png

Other: Get UMAP and PCs from Monocle3. (cds: a Monocle object):

# Get UMAP:
VEC = cds@reducedDims$UMAP
colnames(VEC) = c('UMAP_1','UMAP_2')

# Get 150 PCs
library(Seurat)
DATA=as.matrix(cds@assays$data[[1]])
pbmc <- CreateSeuratObject(counts = DATA, project = "pbmc3k", min.cells = 0, min.features = 0)
pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)
pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 5000)
all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc),npcs = 150)
PCA = pbmc@reductions$pca@cell.embeddings

看一下文献分析出来的图:

图片.png
图片.png
图片.png

大家感觉怎么样,颜值和RNA Velocyto一摸一样啊,不用做RNA速率分析出来这样的图,赶紧试一下吧

A key step in trajectory inference is the determination of starting cells, which is typically done by using manually selected marker genes. In this study, we find that the quantile polarization(分位数极化) of a cell’s principal-component values is strongly associated with their respective states in development hierarchy这个地方是关键,细胞的主成分值与发育状态相关), and therefore provides an unsupervised solution for determining the starting cells. Based on this finding, we developed a tool named VECTOR that infers vectors of developmental directions for cells in Uniform Manifold Approximation and Projection (UMAP). In seven datasets of different developmental scenarios, VECTOR correctly identifies the starting cells and successfully infers the vectors of developmental directions. VECTOR is freely available for academic use at https://github.com/jumphone/Vector.。
用起来倒是很方便
生活很好,有你更好

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,809评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,189评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,290评论 0 359
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,399评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,425评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,116评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,710评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,629评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,155评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,261评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,399评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,068评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,758评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,252评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,381评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,747评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,402评论 2 358

推荐阅读更多精彩内容