深入理解HashMap

redis_logo

HashMap是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。今天我们来深入了解一下这个集合的底层原理。


众所周知,HashMap是一个用于存储Key-Value键值对的集合,每一个键值对也叫做Entry。这些个键值对(Entry)分散存储在一个数组当中,这个数组就是HashMap的主干。

hashmap_logo

这个数组在首次使用时进行初始化,每一个元素的初始值都是Null。
为了了解它,我们从Put方法个Get方法来进行阐述。

一、Put方法的原理

HashMap在调用put方法时会先根据Key值来进行哈希运算来得到结果,即:

index =  Hash(“Key”)

假如计算出的index是2,那么就会将它放入index为2的位置,如图:

hashmap_2

但是再完美的Hash函数也难免会出现index冲突的情况。比如下面这样。

hashmap_3

这时候我们就可以使用链表来解决

HashMap数组的每一个元素不止是一个Entry对象,也是一个链表的头节点。每一个Entry对象通过Next指针指向它的下一个Entry节点。当新来的Entry映射到冲突的数组位置时,只需要插入到对应的链表即可:


hashmap_4

需要注意的是,新来的Entry节点插入链表时,使用的是“头插法”。
所以一个完整的HashMap样子应该是这样的


hashmap_5

二、Get方法的原理

使用Get方法根据Key来查找Value的时候,发生了什么呢?

首先会把输入的Key做一次Hash映射,得到对应的index:

index = Hash(“apple”)

由于刚才所说的Hash冲突,同一个位置有可能匹配到多个Entry,这时候就需要顺着对应链表的头节点,一个一个向下来查找。假设我们要查找的Key是“apple”:


hashmap_6

第一步,我们查看的是头节点Entry6,Entry6的Key是banana,显然不是我们要找的结果。

第二步,我们查看的是Next节点Entry1,Entry1的Key是apple,正是我们要找的结果。

之所以把Entry6放在头节点,是因为HashMap的发明者认为,后插入的Entry被查找的可能性更大

三、哈希方法

如何实现一个尽量均匀分布的Hash函数呢?我们通过利用Key的HashCode值来做某种运算。具体公式如下:

index =  HashCode(Key) &  (Length - 1) 

从公式中我们可以看到运用了HashMap的长度。那么它的长度是多少呢?答案是16。因为这个数字可以尽量避免哈希碰撞,减少相同index的几率。如果你不相信的话,换个别的数字试试?

四、HashMap的扩容

HashMap的容量是有限的。当经过多次元素插入,使得HashMap达到一定饱和度时,Key映射位置发生冲突的几率会逐渐提高。

这时候,HashMap需要扩展它的长度,也就是进行Resize。

影响发生Resize的因素有两个:

1.Capacity
HashMap的当前长度。上一期曾经说过,HashMap的长度是2的幂。
2.LoadFactor
HashMap负载因子,默认值为0.75f。

衡量HashMap是否进行Resize的条件如下:

HashMap.Size   >=  Capacity * LoadFactor

1.扩容
创建一个新的Entry空数组,长度是原数组的2倍。

2.ReHash
遍历原Entry数组,把所有的Entry重新Hash到新数组。为什么要重新Hash呢?因为长度扩大以后,Hash的规则也随之改变。

让我们回顾一下Hash公式:
index = HashCode(Key) & (Length - 1)

当原数组长度为8时,Hash运算是和111B做与运算;新数组长度为16,Hash运算是和1111B做与运算。Hash结果显然不同。

参考文章

漫画:什么是HashMap?


本文作者: catalinaLi
本文链接: http://catalinali.top/2018/knowHashMap/
版权声明: 原创文章,有问题请评论中留言。非商业转载请注明作者及出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容