SVM

1.4. Support Vector Machines

支持向量机

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.

支持向量机是一种用于分类,回归和异常值检测的监督学习方式。

The advantages of support vector machines are:

SVM的优点如下:

Effective in high dimensional spaces.

在多维度空间中具有高效性。

Still effective in cases where number of dimensions is greater than the number of samples.

在特征值大于样本数情况下仍旧高效。

Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

在决定函数(称为支持向量)中使用训练集数据的一个子集,因此内存表现也高效。

Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided, but it is also possible to specify custom kernels.

多功能性:可以为决定函数指定不同的核函数。提供常用的核函数,也可以指定你所习惯的核函数。

The disadvantages of support vector machines include:

缺点如下:

If the number of features is much greater than the number of samples, the method is likely to give poor performances.

如果特征值数远远超过样本数,SVM性能可能不太好。

SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation (see Scores and probabilities, below).

SVM不直接提供概率评估,而是使用开销五倍的交叉验证来计算()

The support vector machines in scikit-learn support both dense (numpy.ndarray and convertible to that by numpy.asarray) and sparse (any scipy.sparse) sample vectors as input. However, to use an SVM to make predictions for sparse data, it must have been fit on such data. For optimal performance, use C-ordered numpy.ndarray (dense) or scipy.sparse.csr_matrix (sparse) with dtype=float64.


1.4.1. Classification

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 首先进入网站NIST XPS Database, Selected Element Search Menu之后 结...
    鸭梨山大哎阅读 18,996评论 0 3
  • UIKIt:UIKit中的控件都是基于Core Graphics实现的 1.UIBezierPath:UIBezi...
    sooxie阅读 336评论 0 0
  • 定风波 北宋 苏轼 莫听穿林打叶声,何妨吟啸且徐行。竹杖芒鞋轻胜马,谁怕,一蓑风雨任平生。 料峭春风吹酒醒,微...
    鱼落忘川阅读 272评论 0 1
  • 老屋虽已废弃,但每次回来,总要去看看。 年三十一早,一个人晃悠过去。一公里多路,我走了很长段时间。...
    临去秋波阅读 170评论 0 0
  • 一晃好多年,匆匆又夏天。 先说说我的第一个朋友,郭书成。 那时还是2009年,是我从农村家里转到县城六年级的时候。...
    孑孑啊阅读 477评论 1 3