11 netty的ChannelHander

ChannelHander

在nio编程中,我们经常需要对channel的输入和输出事件进行处理,Netty抽象出一个ChannelHandler概念,专门用于处理此类事件。

因为IO事件分为输入和输出,因此ChannelHandler又具体的分为ChannelInboundHandlerChannelOutboundHandler,分别用于某个阶段输入输出事件的处理。

ChannelHandler的类图继承关系如下:

image.png

对于ChannelHandlerAdapterChannelInboundHandlerAdapterChannelOutboundHandlerAdapter,从名字就可以看出来其作用是适配器,适配器是一种设计模式。设想一个,一个接口可能定义很多抽象方法,如果子类直接实现,必定要全部实现这些方法,使得代码很臃肿。由于接口中定义的有些方法是公共的,还有一些方法可能是子类并不关心的,因此通过适配器类,这些方法提供默认的实现。这样的话,在编程的时候,子类只需要覆写自己感兴趣的方法即可。

这提示我们,在使用netty进行编程的时候,对于输入事件的处理,我们应该继承ChannelInboundHandlerAdapter类,而不是直接实现ChannelInboundHandler接口;反之对于输出事件,我们应该继承ChannelOutboundHandlerAdapter类。

在处理channel的IO事件时,我们通常会分成几个阶段。以读取数据为例,通常我们的处理顺序是:
处理半包或者粘包问题-->数据的解码(或者说是反序列化)-->数据的业务处理

可以看到不同的阶段要执行不同的功能,因此通常我们会编写多个ChannelHandler,来实现不同的功能。而且多个ChannelHandler之间的顺序不能颠倒,例如我们必须先处理粘包解包问题,之后才能进行数据的业务处理。

ChannelPipeline

Netty中通过ChannelPipeline来保证ChannelHandler之间的处理顺序。每一个Channel对象创建的时候,都会自动创建一个关联的ChannelPipeline对象,我们可以通过io.netty.channel.Channel对象的pipeline()方法获取这个对象实例。

ChannelPipeline 的具体的创建过程定义AbstractChannel类的构造方法中:

package io.netty.channel;
public abstract class AbstractChannel extends DefaultAttributeMap implements Channel {
....
private final DefaultChannelPipeline pipeline;
....
protected AbstractChannel(Channel parent) {
    this.parent = parent;
    id = newId();
    unsafe = newUnsafe();
    pipeline = newChannelPipeline();//创建默认的pipeline
}
....
protected DefaultChannelPipeline newChannelPipeline() {
    return new DefaultChannelPipeline(this);
}
....
@Override
public ChannelPipeline pipeline() {//实现Chnannel定义的pipeline方法,返回pipeline实例
    return pipeline;
}
}

因为ChannelPipleLine的创建是定义在AbstractChannel的构造方法中的,而每个Channel只会被创建一次,只会调用一次构造方法,因此每个Channel实例唯一对应一个ChannelPipleLine 实例。

从上述代码中,我们可以看到ChannelPipleLine的具体创建过程实际上是通过return new DefaultChannelPipeline(this);实现的。DefaultChannelPipeline是ChannelPipeline的默认实现类。

回顾典型的服务端代码的编写:

serverBootstrap.group(bossGroup, workerGroup)
               .channel(NioServerSocketChannel.class)
               .childHandler(new ChannelInitializer<SocketChannel>() {
                       @Override
                       public void initChannel(SocketChannel ch) throws Exception {
                              ch.pipeline().addLast(new ChildChannelHandler1());
                              ch.pipeline().addLast(new ChildChannelHandler2());
                             }
                           })
                .bind(port);

上述代码片段在接受到一个SocketChannel的时候,通过initChannel方法来进行初始化,即将我们自定义的ChildChannelHandler1和ChildChannelHandler2添加到SocketChannel关联的ChannelPipeline中。

ChannelPipeline 除了负责配置handler的顺序,还负责在收到读/写事件之后按照顺序调用这些handler。以下左图显示读操作的调用过程,右边的显示了写事件调用过程。

image.png

举例来说,假设我们按照如下方式创建了一个ChannelPipeline对象。

ChannelPipeline p = ...;
   p.addLast("1", new InboundHandlerA());
   p.addLast("2", new InboundHandlerB());
   p.addLast("3", new OutboundHandlerA());
   p.addLast("4", new OutboundHandlerB());
   p.addLast("5", new InboundOutboundHandlerX());

注:上例中假设InboundHandlerA、InboundHandlerB实现了ChannelInboundHandler接口,OutboundHandlerA、OutboundHandlerB实现了ChannelOutboundHandler接口,InboundOutboundHandlerX同时实现了ChannelInboundHandler和ChannelOutboundHandler接口。前面的1、2、3、4、5并不是handler的编号,而是handler的名字,ChannelPipeline允许在添加handler的时候为其指定一个名字。

可以看到我们在一个ChannelPipeline钟同时定义了输出和输出事件的处理器。需要注意的是,当一个输入事件来的时候,输出事件处理器是不会发生作用的;反之亦然。因此:

当一个输入事件来了之后,事件处理器的调用顺序为1,2,5
当一个输出事件来了之后,事件处理器的处理顺序为5,4,3。(注意输出事件的处理器发挥作用的顺序与定义的顺序是相反的)
需要注意的是:

  1. 默认情况下,一个ChannelPipeline实例中,同一个类型ChannelHandler只能被添加一次,如果添加多次,则会抛出异常,具体参见io.netty.channel.DefaultChannelPipeline#checkMultiplicity。如果需要多次添加同一个类型的ChannelHandler的话,则需要在该ChannelHandler实现类上添加@Sharable注解。
  2. 在ChannelPipeline中,每一个ChannelHandler都是有一个名字的,而且名字必须的是唯一的,如果名字重复了,则会抛出异常,参见io.netty.channel.DefaultChannelPipeline#checkDuplicateName。
  3. 如果添加ChannelHandler的时候没有显示的指定名字,则会按照规则其起一个默认的名字。具体规则如下,如果ChannelPipeline中只有某种类型的handler实例只有一个,如XXXHandler,YYYHandler,则其名字分别为XXXHandler#0,YYYHandler#0,如果同一类型的Handler有多个实例,则每次之后的编号加1。具体可参见io.netty.channel.DefaultChannelPipeline#generateName方法。

ChannelHandlerContext

前面提到可以通过ChannelPipeline的添加方法,按照顺序添加ChannelHandler,并在之后按照顺序进行调用。事实上,每个ChannelHandler会被先封装成ChannelHandlerContext。之后再封装进ChannelPipeline中。

DefaultChannelPipelineaddLast方法为例,如果查看源码,最终会定位到以下方法:
DefaultChannelPipeline#addLast(EventExecutorGroup, String,ChannelHandler)

@Override
public ChannelPipeline addLast(EventExecutorGroup group, final String name, ChannelHandler handler) {
    synchronized (this) {
        checkDuplicateName(name);//check这种类型的handler实例是否允许被添加多次
       //将handler包装成一个DefaultChannelHandlerContext类
        AbstractChannelHandlerContext newCtx = new DefaultChannelHandlerContext(this, group, name, handler);
        addLast0(name, newCtx);//维护AbstractChannelHandlerContext的先后关系
    }
 
    return this;
}

可以看到的确是先将ChannelHandler当做参数构建成一个DefaultChannelHandlerContext实例之后,再调用addLast0方法维护ChannelHandlerContext的先后关系,从而确定了ChannelHandler的先后关系。

ChannelHandlerContext的类图继承关系如下:

image.png

ChannelPipeline的默认实现类是DefaultChannelPipeline,ChannelHandlerContext的默认实现类是DefaultChannelHandlerContext

DefaultChannelPipeline内部是通过一个双向链表记录ChannelHandler的先后关系,而双向链表的节点是AbstractChannelHandlerContext类。

以下是AbstractChannelHandlerContext类的部分源码(双向链表节点)

abstract class AbstractChannelHandlerContext extends DefaultAttributeMap
        implements ChannelHandlerContext, ResourceLeakHint {
...
volatile AbstractChannelHandlerContext next;//当前节点的上一个节点
volatile AbstractChannelHandlerContext prev;//当前节点的下一个节点
...
}

DefaultChannelPipeline内部通过两个哨兵节点HeadContext和TailContext作为链表的开始和结束,熟悉双向链表数据结构的同学,肯定知道,设置哨兵可以在移除节点的时候,不需要判断是否是最后一个节点。相关源码如下:

public class DefaultChannelPipeline implements ChannelPipeline {
...
private static final String HEAD_NAME = generateName0(HeadContext.class);
private static final String TAIL_NAME = generateName0(TailContext.class);
...
final AbstractChannelHandlerContext head;//双向链表的头元素
final AbstractChannelHandlerContext tail;//双向列表的尾部元素
 
private final Channel channel;
....
protected DefaultChannelPipeline(Channel channel) {
    this.channel = ObjectUtil.checkNotNull(channel, "channel");
     ....
    tail = new TailContext(this);//创建双向链表头部元素实例
    head = new HeadContext(this);//创建双向链表的尾部元素实例
    //设置链表关系
    head.next = tail;
    tail.prev = head;
}
....
....
private void addLast0(AbstractChannelHandlerContext newCtx) {
   //设置ChannelHandler的先后顺序关系
    AbstractChannelHandlerContext prev = tail.prev;
    newCtx.prev = prev;
    newCtx.next = tail;
    prev.next = newCtx;
    tail.prev = newCtx;
   }
 }
}

很明显HeadContextTailContext除了作为哨兵,还有其他的作用,这个我们稍后介绍。
思考为什么DefaultChannelPipeline不是直接添加ChannelHander到其中,而是通过将其包装成AbstractChannelHandlerContext类后再添加?
答案很简单,ChannelHandler本身不知道下一个ChannelHandler 是谁,或者有没有下一个ChannelHandler,这些信息需要ChannelPipeline类来维护。只不过DefaultChannelPipeline选择通过链表的方式来记录来实现这个关系。你完全也可以自定义了一个ChannelPipeline的实现,通过其他任何方式来维护,例如通过一个数组。

另外一个原因是,因为ChannelHander通常是由开发者自己实现的,在回调其方法时,我们可以AbstractChannelHandlerContext给其封装更多的有用的信息。

ChannelHander、ChannelPipeline、ChannelHandlerContext的联合工作过程

前面提到DefaultChannelPipeline是将ChannelHander包装成AbstractChannelHandlerContext类之后,再添加到链表结构中的,从而实现handler的级联调用。

ChannelInboundHandler 接口定义的9个方法:

public interface ChannelInboundHandler extends ChannelHandler {
    void channelRegistered(ChannelHandlerContext ctx) throws Exception;
    void channelUnregistered(ChannelHandlerContext ctx) throws Exception;
    void channelActive(ChannelHandlerContext ctx) throws Exception;
    void channelInactive(ChannelHandlerContext ctx) throws Exception;
    void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception;
    void channelReadComplete(ChannelHandlerContext ctx) throws Exception;
    void userEventTriggered(ChannelHandlerContext ctx, Object evt) throws Exception;
    void channelWritabilityChanged(ChannelHandlerContext ctx) throws Exception;
    void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception;
}

而在ChannelPipeline和ChannelHandlerContext中,都定义了相同的9个以fire开头的方法,如下所示

image.png

可以发现这两个接口定义的9个方法与ChannelInboundHandler定义的9个方法是一一对应的,只是在定义每个方法的时候,在前面加了1个fire。
从总体上来说,在调用的时候,是按照如下顺序进行的:

  1. 先是ChannelPipeline中的fireXXX方法被调用
  2. ChannelPipeline中的fireXXX方法接着调用ChannelPipeline维护的ChannelHandlerContext链表中的第一个节点即HeadContext 的fireXXX方法
  3. ChannelHandlerContext 中的fireXXX方法调用ChannelHandler中对应的XXX方法。由于可能存在多个ChannelHandler,因此每个ChannelHandler的xxx方法又要负责调用下一个ChannelHandlerContext的fireXXX方法,直到整个调用链完成

下面详细介绍每个fire方法被调用的时机
fireChannelRegistered()fireChannelActive()是在Channel注册到EventLoop中时调用的,只会被调用一次
相关源码位于:
io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        ...
        doRegister();//注册通道到EventLoop中
        registered = true;
        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();//注册成功,调用fireChannelRegistered()
        if (isActive()) {
            pipeline.fireChannelActive();//如果激活,调用fireChannelActive()
        }
    } catch (Throwable t) {
        ....
    }
}

注意isActive方法是抽象方法,由子类覆盖,可以查看NioServerSocketChannel和NioSocketChannel的isActive方法,查看这两个通道在什么情况下属于激活状态。
类似的,当取消注册时候fireChannelInactive()fireChannelUnregistered()会被调用

fireChannelRead(Object msg)fireChannelReadComplete()在有数据需要读取的情况下会被触发,可能会被触发多次
相关源码位于io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read

@Override
public void read() {
    ....
    try {
        int totalReadAmount = 0;
        boolean readPendingReset = false;
        do {
            ....
            pipeline.fireChannelRead(byteBuf);//有数据要读取,调用fireChannelRead
            ....
        } while (++ messages < maxMessagesPerRead);
 
        pipeline.fireChannelReadComplete();//数据读取完成,调用fireChannelReadComplete()
        ....
    } catch (Throwable t) {
        handleReadException(pipeline, byteBuf, t, close);
    } finally {
        ....
    }
}

fireExceptionCaught()方法,在读取数据出错的情况下,会被调用
在上述代码片段中,有一个handleReadException方法,表示如果读取数据出错的处理逻辑,其内部会调用fireExceptionCaught()
io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#handleReadException

private void handleReadException(ChannelPipeline pipeline,
                        ByteBuf byteBuf, Throwable cause, boolean close) {
    ....
    pipeline.fireExceptionCaught(cause);//出现异常时,调用fireExceptionCaught
    if (close || cause instanceof IOException) {
        closeOnRead(pipeline);
    }
}

fireUserEventTriggered(Object event)当正在读取数据的时候,如果连接关闭,调用此方法
上述代码片段在处理异常的时候,会判断异常类型是否是IOException或者连接是否关闭,如果是,则调用closeOnRead方法,这个方法内部会调用 fireUserEventTriggered(Object event)
io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#closeOnRead

private void closeOnRead(ChannelPipeline pipeline) {
    SelectionKey key = selectionKey();
    setInputShutdown();
    if (isOpen()) {
        if (Boolean.TRUE.equals(config().getOption(ChannelOption.ALLOW_HALF_CLOSURE))) {
            key.interestOps(key.interestOps() & ~readInterestOp);
            pipeline.fireUserEventTriggered(ChannelInputShutdownEvent.INSTANCE);//调用fireUserEventTriggered方法
        } else {
            close(voidPromise());
        }
    }
}

fireChannelWritabilityChanged()方法,当有数据需要输出的时候被调用
相关源码位于:
io.netty.channel.ChannelOutboundBuffer#incrementPendingOutboundBytes

void incrementPendingOutboundBytes(int size) {
    ...
    long newWriteBufferSize = TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, size);
    if (newWriteBufferSize > channel.config().getWriteBufferHighWaterMark()) {
        if (WRITABLE_UPDATER.compareAndSet(this, 1, 0)) {
            channel.pipeline().fireChannelWritabilityChanged();//需要输出数据,调用fireChannelWritabilityChanged()
        }
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容