R语言学习笔记

1. apply,sapply,lapply,tapply,vapply以及mapply的用法

1.1 apply()

apply(m,dimcode,f,fargs)

m 是一个矩阵。
dimcode是维度编号,取1则为对行应用函数,取2则为对列运用函数。
f是函数
fargs是f的可选参数集

z <- matrix(1:6, nrow = 3)
f <- function(x) {
x/c(2, 8)
}
apply(z,1,f) #f函数得到两个元素,则为几行,竖着来的
[,1] [,2] [,3]
[1,] 0.5 1.000 1.50
[2,] 0.5 0.625 0.75

1.2 lapply()

lapply()(代表list apply)与矩阵的apply()函数的用法类似, 对列表的每个组件执行给定的函数,并返回另一个列表。

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
lapply(x, mean)
$a
[1] 5.5

$beta
[1] 4.535125

$logic
[1] 0.5

1.3 sapply()

sapply()(代表simplified [l]apply)可以将结果整理以向量,矩阵,列表 的形式输出。

sapply(x, mean)
a beta logic
5.500000 4.535125 0.500000
sapply(x, quantile) #每一个对应组件输出5个元素,所以为5行,像矩阵一样,竖着来的。
a beta logic
0% 1.00 0.04978707 0.0
25% 3.25 0.25160736 0.0
50% 5.50 1.00000000 0.5
75% 7.75 5.05366896 1.0
100% 10.00 20.08553692 1.0
sapply(2:4, seq)
[[1]]
[1] 1 2

[[2]]
[1] 1 2 3

[[3]]
[1] 1 2 3 4

1.4 vapply()

vapply()与sapply()相似,他可以预先指定的返回值类型。使得得到的结果更加安全。

vapply(x, quantile, c(1,2,5,6,8)) #它需要一个5个长度的向量来告诉他返回的类型,向量里面的内容可以变换
a beta logic
0% 1.00 0.04978707 0.0
25% 3.25 0.25160736 0.0
50% 5.50 1.00000000 0.5
75% 7.75 5.05366896 1.0
100% 10.00 20.08553692 1.0

1.5 tapply( )

tapply(x,f,g)需要向量 x (x不可以是数据框),因子或因子列表 f 以及函数 g 。
tapply()执行的操作是:暂时将x分组,每组对应一个因子水平,得到x的子向量,然后这些子向量应用函数 g

a <- c(24,25,36,37)
b <- c('q', 'w', 'q','w')
tapply(a, b, mean)
q w
30 31

1.6 mapply()

多参数版本的sapply()。第一次计算传入各组向量的第一个元素到FUN,进行结算得到结果;第二次传入各组向量的第二个元素,得到结果;第三次传入各组向量的第三个元素…以此类推。

l1 <- list(a = c(1:10), b = c(11:20))
l2 <- list(c = c(21:30), d = c(31:40))
mapply(sum, l1a, l1b, l2c, l2d)
[1] 64 68 72 76 80 84 88 92 96 100

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容