Task2 数据读取与数据分析
本章主要内容为数据读取和数据分析,具体使用Pandas
库完成数据读取操作,并对赛题数据进行分析构成。
- 学习使用
Pandas
读取赛题数据 - 分析赛题数据的分布规律
数据读取
Task2 数据读取与数据分析
本章主要内容为数据读取和数据分析,具体使用Pandas
库完成数据读取操作,并对赛题数据进行分析构成。
学习目标
- 学习使用
Pandas
读取赛题数据 - 分析赛题数据的分布规律
数据读取
%%time
df_train = pd.read_csv('../data/train_set.csv', sep='\t')
df_test = pd.read_csv('../data/test_a.csv', sep='\t')
赛题数据虽然是文本数据,每个新闻是不定长的,但任然使用csv格式进行存储。因此可以直接用Pandas
完成数据读取的操作。
read_csv
由三部分构成:
读取的文件路径,这里需要根据改成你本地的路径,可以使用相对路径或绝对路径;
分隔符
sep
,为每列分割的字符,设置为\t
即可;读取行数
nrows
,为此次读取文件的函数,是数值类型(由于数据集比较大,建议先设置为100);
[2]:
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
label | text | |
---|---|---|
0 | 2 | 2967 6758 339 2021 1854 3731 4109 3792 4149 15... |
1 | 11 | 4464 486 6352 5619 2465 4802 1452 3137 5778 54... |
2 | 3 | 7346 4068 5074 3747 5681 6093 1777 2226 7354 6... |
3 | 2 | 7159 948 4866 2109 5520 2490 211 3956 5520 549... |
4 | 3 | 3646 3055 3055 2490 4659 6065 3370 5814 2465 5... |
,
上图是读取好的数据,是表格的形式。第一列为新闻的类别,第二列为新闻的字符。
数据分析
在读取完成数据集后,我们还可以对数据集进行数据分析的操作。虽然对于非结构数据并不需要做很多的数据分析,但通过数据分析还是可以找出一些规律的。
此步骤我们读取了所有的训练集数据,在此我们通过数据分析希望得出以下结论:
- 赛题数据中,新闻文本的长度是多少?
- 赛题数据的类别分布是怎么样的,哪些类别比较多?
- 赛题数据中,字符分布是怎么样的?
句子长度分析
在赛题数据中每行句子的字符使用空格进行隔开,所以可以直接统计单词的个数来得到每个句子的长度。统计并如下:
%pylab inline
df_train['text_len'] = df_train['text'].apply(lambda x: len(x.split(' ')))
print(df_train['text_len'].describe())
Populating the interactive namespace from numpy and matplotlib
count 200000.000000
mean 907.207110
std 996.029036
min 2.000000
25% 374.000000
50% 676.000000
75% 1131.000000
max 57921.000000
Name: text_len, dtype: float64
对新闻句子的统计可以得出,本次赛题给定的文本比较长,每个句子平均由907个字符构成,最短的句子长度为2,最长的句子长度为57921。
下图将句子长度绘制了直方图,可见大部分句子的长度都几种在2000以内。
_ = plt.hist(df_train['text_len'], bins=200)
plt.xlabel('Text char count')
plt.title("Histogram of char count")
plt.xlim(0, 10000)
(0.0, 10000.0)
新闻类别分布
接下来可以对数据集的类别进行分布统计,具体统计每类新闻的样本个数。
这里还可以根据字在每个句子的出现情况,反推出标点符号。下面代码统计了不同字符在句子中出现的次数,其中字符3750,字符900和字符648在20w新闻的覆盖率接近99%,很有可能是标点符号。
数据分析的结论
通过上述分析我们可以得出以下结论:
- 赛题中每个新闻包含的字符个数平均为1000个,还有一些新闻字符较长;
- 赛题中新闻类别分布不均匀,科技类新闻样本量接近4w,星座类新闻样本量不到1k;
- 赛题总共包括7000-8000个字符;
通过数据分析,我们还可以得出以下结论:
每个新闻平均字符个数较多,可能需要截断;
由于类别不均衡,会严重影响模型的精度;
本章小结
本章对赛题数据进行读取,并新闻句子长度、类别和字符进行了可视化分析。
本章作业
- 假设字符3750,字符900和字符648是句子的标点符号,请分析赛题每篇新闻平均由多少个句子构成?
尝试对字符使用648进行分割:
- 统计每类新闻中出现次数对多的字符
- 假设字符3750,字符900和字符648是句子的标点符号,请分析赛题每篇新闻平均由多少个句子构成?
df_train['sentence'] = df_train['text'].apply(lambda x: len(x.split('648')))
使用648作为分割符号,计算每个句子的数量,最后得到平均每个新闻的句子数量为27句话
可以绘制出句子数量的分布图
- 统计每类新闻中出现次数最多的字符
正在解决