sparkStreaming与kafka的整合
//基于Direct方式整合kafka
package spark.com.test.day04
import kafka.serializer.StringDecoder
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreamingWithDirctOps {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
Logger.getLogger("org.spark_project").setLevel(Level.WARN)
val conf=new SparkConf()
.setAppName("SparkStreamingWithDirctOps")
.setMaster("local[*]")
//创建SteamingContext对象,第一参数为SparkConf对象,第二个参数为批次时间;
val ssc=new StreamingContext(conf,Seconds(2))
val kafkaparams=Map[String,String](
"bootstrap.servers"->
"haddoop01:9092,hadoop02:9092,hadoop03:9092",
"auto.offset.reset"->"largest",//消费方式从最大偏移量开始读取数据
"group.id"->"bd-1901-gropu-3"
)
val topics="spark".split(",").toSet//创建一个集合topics
val message:InputDStream[(String,String)]=KafkaUtils
.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaparams,topics)
message.print()
ssc.start()
ssc.awaitTermination()
/*
awaitTermination(long timeOut, TimeUnit unit)
当前线程阻塞,直到
等所有已提交的任务(包括正在跑的和队列中等待的)执行完
或者等超时时间到
或者线程被中断,抛出InterruptedException
然后返回true(shutdown请求后所有任务执行完毕)或false(已超时)
*/
}
}
//sparkStreaming基于Receiver方式整合kafka
package spark.com.test.day04
import kafka.serializer.StringDecoder
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkStreamingWithReceiver2KafkaOps {
def main(args: Array[String]): Unit = {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.hadoop").setLevel(Level.WARN)
Logger.getLogger("org.spark_project").setLevel(Level.WARN)
//整合入口kafkautils
val conf =new SparkConf()
.setAppName("SparkStreamingWithReceiver2KafkaOps")
.setMaster("local[*]")
//创建SteamingContext对象,第一参数为SparkConf对象,第二个参数为批次时间;
val ssc =new StreamingContext(conf,Seconds(2))
//连接kafka参数
val kafkaParams =Map[String,String](
"zookeeper.connect" ->
"hadoop01:2181,hadoop02:2181,hadoop03:2181/kafka",//集群入口
"group.id" ->"bd-1901-group-2",//消费组
"auto.offset.reset" ->"smallest" //消费方式从头开始读
)
//创建map类型的参数topics
val topics =Map[String, Int]("spark" ->3)
val message: ReceiverInputDStream[(String,String)] = KafkaUtils
.createStream[String,String, StringDecoder, StringDecoder](ssc, kafkaParams, topics, StorageLevel.MEMORY_ONLY)
message.print()
ssc.start()
ssc.awaitTermination()
}
private def readfromKafka(ssc: StreamingContext) = {
//接收kafka中的数据
val zkQuorum ="hadoop01:2181,hadoop02:2181,hadoop03:2181/kafka"
val groupId ="bd-1901-group-2"
val topics =Map[String, Int](
"spark" ->3
)
/**
* 返回值的key:kafka中每一条record对应的key
* 返回值的value:kafka中每一条recoder对应的value
* 这种方式只能从最开始的位置消费数据
* ReceiverInputDStream中的key就是当前一条数据在kafka中的key,
* value就是该条数据对应的value
* KafkaUtils工具类入口kafak整合的时候需要用到
*/
val inputStream: ReceiverInputDStream[(String,String)] = KafkaUtils
.createStream(ssc, zkQuorum, groupId, topics)
inputStream.print()
}
}