Java集合---大结局(总结概括终结篇)

文章写到这,感觉该做一个总结了,也是时候结束了, 最常用的集合类基本上已经写完了,剩下的就不再继续探索了,感兴趣的自行研究,应该还会有几篇番外篇,关于并发包JUC中的集合,如currenthashmap等类的探索, 不过要过段时间了。

之前的文章都在这里了:

Java集合 ---总体框架及主要接口,抽象类分析
Java集合 --- ArrayList底层实现和原理
Java集合 --- Vector底层实现和原理
Java集合 --- LinkedList底层实现和原理
Java集合 --- HashMap底层实现和原理
Java集合 --- TreeMap底层实现和原理
Java集合 --- HashSet底层实现和原理
Java集合 --- TreeSet底层实现和原理
Java集合 --- LinkedHashMap底层实现

下面对上面的文章做一下总结,一些在上面文章中没有涉及到的点,在详细的说明一下。

Set和Map的关系

Set代表一种无序不可重复的集合,Map代表一种由多个Key-Value对组成的集合。表面上看它们之间似乎没有啥关系,但是Map可以看成是Set的扩展。为什么这么说呢?看下面的这个例子:

在Map的方法中有一个这样的方法,Set<k> keySet() ,也就是说Map中的键可以转化成一个Set集合。如果把value看成key的一个附属品,或者把key-value看成是一个整体,那么Map集合就变成了一个Set集合。

HashSet和HashMap的关系

HashSet和HashMap有很多的相似之处,对于HashSet而言,采用了Hash算法来决定元素的存储位置,HashMap而言,将value当成了key的附属品,根据Key的Hash值来决定存放的位置。

有一点需要说明一下,经常听说,集合存储的是对象, 这其实是不准确的。准确来说,集合中存储的其实是对象的引用地址或者称为引用变量。而引用地址或者引用变量指向了实际的java对象。java集合实际是引用变量的集合而非java对象的集合。

通过之前的源码解析其实可以发现,HashMap在存放key-value时,并没有过多的考虑value的内容。只是根据key来确定key-value对在数组中应该存放的位置。HashMap的底层是一个Entry[]数组,key-value组成了一个entry。当需要向HashMap中添加元素时,首先根据key的hashcode来确定在数组中存放的位置,如果key为null,采用特殊方法进行处理,存放在数组的0号位置。如果当前位置已经有元素存在,则遍历单链表,如果两个key相等,则用新值替换掉旧值,如果key不相等,则插入到链表中。有一点需要说明,在jdk8之前,hashmap使用数组+单链表存储,在8后,采用了数组+链表+红黑树存储。

对于HashSet要说的没有太多,HashSet的实现也是比较的简单,它的底层使用HashMap实现的,只是封装了一个HashMap对象来存储所有的集合对象。

TreeSet和TreeMap的关系

TreeSet底层采用了一个NavigableMap来保存TreeSet集合的元素,但实际上NavigableMap只是一个借口,因为底层依然是使用TreeMap来包含Set集合中的元素。 与HashSet类似,TreeSet也是调用TreeMap的方法来实现一些操作。TreeMap的底层是使用“红黑树”的排序二叉树来保存Map中的每个Entry.关于TreeMap的实现在上面的链接中有详细的解释,请自行查阅。

HashSet和HashMap是无序的,而TreeSet和TreeMap是有序的

ArrayList和LinkedList的关系

List代表的是一种线性结构,ArrayList则是一种顺序存储的线性表,ArrayList底层采用数组来保存每个元素,LinkedList是一种链式存储的线性表,本质是一个双向链表。

迭代器Iterator
fast-fail快速失败机制

在迭代的过程中,如果删除了某一个元素,collection会抛出ConcurrentModificationException异常。

为什么会出现这个异常呢?
这是因为在迭代时,某个线程对该collection在结构上进行了更改,从而产生fail-fast.当方法检测到对象修改后,但是不允许这种修改就会抛出该异常。fail-fast只是一种异常检测机制,JDK并不能保证该机制一定会发生。

通过一个demo来详细的说明下:

LinkedList<String> list = new LinkedList<String>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");

for (String a : list) {
    System.out.println(a);
    list.remove(2);
}

执行上面的代码便会抛出 java.util.ConcurrentModificationException;
来看一下LinkedList remove()方法的源码:

 //删除方法
 public E remove(int index) {
        checkElementIndex(index); //验证index是否合法
        return unlink(node(index)); //调用unlink方法
    }
 E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;   //modCount+1 敲黑板划重点
        return element;
    }

关于上面代码的具体含义请自行查阅上面的文章。 上面代码在删除指定位置的元素后将执行私有内部类ListItr中的next()方法,进行下一个元素的遍历.

//在私有内部类ListItr中有如下的属性定义,再进行遍历时,将遍历对象的modCount值赋值给了expectedModCount。
private int expectedModCount = modCount;

public E next() {
     checkForComodification();
     if (!hasNext())
         throw new NoSuchElementException();

      lastReturned = next;
      next = next.next;
      nextIndex++;
      return lastReturned.item;
}
final void checkForComodification() {
       if (modCount != expectedModCount)
              throw new ConcurrentModificationException();
 }

运行next()方法后,会先执行checkForComodification()方法,判断modCount与expectedModCount是否相等,不相等则抛出异常。

因为是遍历对象单方面改变的modCount值,ListItr并没有监测到,所以变造成了modCount和expectedModCount不相等的情况。于是出现了异常。我的理解是,在使用迭代器进行对象遍历时,创建了一个新的引用,而新引用指向了遍历的对象,同时将遍历对象的一些属性赋值给了迭代器对象。调用遍历对象的方法时,对象的属性发生变化,而迭代器对象中的遍历对象的拷贝唯有进行更新,导致了值得不匹配,从而抛出异常。这只是我的个人理解,欢迎深入交流。

采用下面的方法就不会出现该异常,是因为迭代器对象进行了属性的更新! 通过Iterator的方法删除后,保证了modCount与expectedModCount值的统一。

Iterator<String> iterator = list.iterator();
        while(iterator.hasNext()){
            String str = iterator.next();
            if(str.equals("a")){
                iterator.remove();
            }
        }

集合篇 完结 。


少年听雨歌楼上,红烛昏罗帐。  
壮年听雨客舟中,江阔云低,断雁叫西风。
感谢支持!
                                        ---起个名忒难
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容

  • 1. Java基础部分 基础部分的顺序:基本语法,类相关的语法,内部类的语法,继承相关的语法,异常的语法,线程的语...
    子非鱼_t_阅读 31,567评论 18 399
  • title: java集合框架学习总结 tags:集合框架 categories:总结 date: 2017-03...
    行径行阅读 1,674评论 0 2
  • 一、基本数据类型 注释 单行注释:// 区域注释:/* */ 文档注释:/** */ 数值 对于byte类型而言...
    龙猫小爷阅读 4,253评论 0 16
  • 面向对象主要针对面向过程。 面向过程的基本单元是函数。 什么是对象:EVERYTHING IS OBJECT(万物...
    sinpi阅读 1,041评论 0 4
  • 前面已经介绍完了Collection接口下的集合实现类,今天我们来介绍Map接口下的两个重要的集合实现类HashM...
    Ruheng阅读 10,434评论 2 38