朴素贝叶斯最详细讲解

https://blog.csdn.net/qq_17073497/article/details/81076250

以上网址,讲的深入浅出,循循善诱。可以详细看看。 

贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的理想情况下,贝叶斯决策轮考虑如何基于这些概率和误判损失来选择最优的类别标记。

1.1 后验概率

P{H0|x}是给定观测值x条件下H0出现的概率,统称为后验概率

For example:

假设一个学校里有60%男生和40%女生。女生穿裤子的人数和穿裙子的人数相等,所有男生穿裤子。一个人在远处随机看到了一个穿裤子的学生。那么这个学生是女生的概率是多少?

使用 贝叶斯定理,事件A是看到女生,事件B是看到一个穿裤子的学生。我们所要计算的是P(A|B)。

P(A)是忽略其它因素,看到女生的概率,在这里是40%

P(A')是忽略其它因素,看到不是女生(即看到男生)的概率,在这里是60%

P(B|A)是女生穿裤子的概率,在这里是50%

P(B|A')是男生穿裤子的概率,在这里是100%

P(B)是忽略其它因素,学生穿裤子的概率,P( ) = P( | )P( ) + P( | ')P( '),在这里是0.5×0.4 + 1×0.6 = 0.8.

根据贝叶斯定理,我们计算出后验概率P(A|B)

P(A|B)=P(B|A)*P(A)/P(B)=0.25

可见,后验概率实际上就是条件概率。

---------------------

作者:Sunning_001

来源:CSDN

原文:https://blog.csdn.net/qq_17073497/article/details/81076250

版权声明:本文为博主原创文章,转载请附上博文链接!


然后,再看看

https://blog.csdn.net/qq_32690999/article/details/78737393

朴素贝叶斯分类器,顾名思义,是一种分类算法,且借助了贝叶斯定理。另外,它是一种生成模型(generative model),采用直接对联合概率P(x,c)建模,以获得目标概率值的方法。


然后再看这个

https://www.leiphone.com/news/201707/VyUNGYnEy3kXnkVb.html

https://www.leiphone.com/news/201707/VyUNGYnEy3kXnkVb.html



统计

这里统计什么呢?统计两种数据

1. 评论级别的次数

这里有三个级别分别对应

c0 → 好 2

c1 → 中 3

c2 → 差 5



全面的分析
https://www.leiphone.com/news/201706/YXVb0apveG0yYDeT.html


https://www.leiphone.com/news/201706/YXVb0apveG0yYDeT.html


先准备一下英文文本数据。

text = "I am happy today. I feel sad today."

这里我们输入了两句话,把它存入了text这个变量里面。学了十几年英语的你,应该立即分辨出这两句话的情感属性。第一句是“我今天很高兴”,正面;第二句是“我今天很沮丧”,负面。

下面我们看看情感分析工具TextBlob能否正确识别这两句话的情感属性。

首先我们呼唤TextBlob出来。

from textblob import TextBlob

blob = TextBlob(text)

blob

按Shift+Enter执行,结果好像只是把这两句话原封不动打印了出来而已嘛。

别着急,TextBlob已经帮我们把一段文本分成了不同的句子。我们不妨看看它的划分对不对。

blob.sentences

执行后输出结果如下:

划分无误。可是你能断句有啥了不起?!我要情感分析结果!

你怎么这么着急啊?一步步来嘛。好,我们输出第一句的情感分析结果:

blob.sentences[0].sentiment

执行后,你会看到有意思的结果出现了:

情感极性0.8,主观性1.0。说明一下,情感极性的变化范围是[-1, 1],-1代表完全负面,1代表完全正面。

既然我说自己“高兴”,那情感分析结果是正面的就对了啊。

趁热打铁,我们看第二句。

blob.sentences[1].sentiment

执行后结果如下:

“沮丧”对应的情感极性是负的0.5,没毛病!

更有趣的是,我们还可以让TextBlob综合分析出整段文本的情感




展望未来。 


https://www.leiphone.com/news/201602/btecnPS3zqnYS6R8.html



https://blog.csdn.net/lsldd/article/details/41542107

用电影评论,效果很好。

效果比KNN效果好。 



https://blog.csdn.net/stevesea/article/details/82877686

垃圾邮件分类


https://blog.csdn.net/cymy001/article/details/79052366

多分类 新闻多分类。




最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容