Ai 大模型基础

在人工智能(AI)的领域中,当我们提到“XXB”(例如6B、34B)这样的术语时,它通常指的是模型的参数量,其中“B”代表“Billion”,即“十亿”。因此,6B表示模型有6十亿(即6亿)个参数,而34B表示模型有34十亿(即34亿)个参数。

Transformer:transformer 模型是一种神经网络架构,可以将一种类型的输入转换为另一种类型的输出。它可以用于生成文本、图像和机器人指令,并且可以对不同数据模式之间的关系进行建模。该模型利用注意力的 AI 概念来强调相关词的权重,可以处理更长的序列,并且可以更有效地扩展。Transformer 架构由协同工作的编码器和解码器组成,注意力机制让转换器根据其他单词或标记的估计重要性对单词的含义进行编码。

LLM(大语言模型):大型语言模型(LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有自注意力功能的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。

AIGC(人工智能生成内容):AIGC(Artificial Intelligence Generated Content / AI-Generated Content)中文译为人工智能生成内容,一般认为是相对于PCG(专业生成内容)、UCG(用户生成内容)而提出的概念。AIGC狭义概念是利用AI自动生成内容的生产方式。广义的AIGC可以看作是像人类一样具备生成创造能力的AI技术,即生成式AI,它可以基于训练数据和生成算法模型,自主生成创造新的文本、图像、音乐、视频、3D交互内容等各种形式的内容和数据,以及包括开启科学新发现、创造新的价值和意义等。

Fine-tuning (微调):微调(Fine-tuning)是一种常用的机器学习方法,主要用于对已经预训练过的模型进行调整,使其适应新的任务。这些预训练模型通常是在大规模的数据集(例如整个互联网的文本)上进行训练,从而学习到数据的基本模式。随后,这些模型可以通过在较小且特定的数据集上进行进一步训练,即微调,来适应特定的任务。

Token:根据事先定义好的编码算法生成,一个token可以是一个单词,也可以是字符块。

Agent:人工智能代理,使用语言模型来选择要采取的一系列操作,Agent适用于具有记忆和对话功能的更复杂场景。解锁 LLM 的能力限制。特殊性在于它可以使用各种外部工具来完成我们给定的操作。

Prompt :提示 , 提示是提供给 AI 系统以指导其响应或输出的一段文本。例如,当您向 AI 聊天机器人提问或给它一个要写的主题时,这就是提示。

Natural Language Processing (NLP) —— 自然语言处理: 教计算机理解和使用人类语言

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容