用FaceNet的模型计算人脸之间距离(TensorFlow)

2015年Google的研究人员发表了一篇论文:FaceNet: A Unified Embedding for Face Recognition and Clustering,是关于人脸识别的,他们训练一个网络来得到人脸的128维特征向量,从而通过计算特征向量之间的欧氏距离来得到人脸相似程度。在LFW上面取得了当时最好的成绩,识别率为99.63%。

传统的基于CNN的人脸识别方法为:利用CNN的siamese网络来提取人脸特征,然后利用SVM等方法进行分类。而这篇文章中他们提出了一个方法系统叫作FaceNet,它直接学习图像到欧式空间上点的映射,其中呢,两张图像所对应的特征的欧式空间上的点的距离直接对应着两个图像是否相似。

人脸之间距离

如上图所示,直接得出不同人脸图片之间的距离,通过距离就可以判断是否是同一个人,阈值大概在1.1左右。

而现在我要做的,就是用训练好的模型文件,实现任意两张人脸图片,计算其FaceNet距离。然后就可以将这个距离用来做其他的事情了。

环境

  • macOS 10.12.6
  • Python 3.6.3
  • TensorFlow 1.3.0

实现

模型文件

首先我们需要训练好的模型文件,这个可以在FaceNet官方的github中获取:

github的README中有

注意他们是存放在Google云盘中的,需要翻墙获取(没个翻墙能力连科研都做不好了。。)

代码

这里我们需要FaceNet官方的github中获取到的facenet.py文件以供调用,需要注意的是其github中的文件一直在更新,我参考的很多代码中用到的facenet.py文件里方法居然有的存在有的不存在,所以可能随着时间流逝有些现在能成功以后需要修改代码才能成功了。

代码如下:

# -*- coding: utf-8 -*-

import tensorflow as tf
import numpy as np
import scipy.misc
import cv2
import facenet

image_size = 200 #don't need equal to real image size, but this value should not small than this
modeldir = './model_check_point/20170512-110547.pb' #change to your model dir
image_name1 = 'x.jpg' #change to your image name
image_name2 = 'y.jpg' #change to your image name

print('建立facenet embedding模型')
tf.Graph().as_default()
sess = tf.Session()

facenet.load_model(modeldir)
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1]

print('facenet embedding模型建立完毕')

scaled_reshape = []

image1 = scipy.misc.imread(image_name1, mode='RGB')
image1 = cv2.resize(image1, (image_size, image_size), interpolation=cv2.INTER_CUBIC)
image1 = facenet.prewhiten(image1)
scaled_reshape.append(image1.reshape(-1,image_size,image_size,3))
emb_array1 = np.zeros((1, embedding_size))
emb_array1[0, :] = sess.run(embeddings, feed_dict={images_placeholder: scaled_reshape[0], phase_train_placeholder: False })[0]

image2 = scipy.misc.imread(image_name2, mode='RGB')
image2 = cv2.resize(image2, (image_size, image_size), interpolation=cv2.INTER_CUBIC)
image2 = facenet.prewhiten(image2)
scaled_reshape.append(image2.reshape(-1,image_size,image_size,3))
emb_array2 = np.zeros((1, embedding_size))
emb_array2[0, :] = sess.run(embeddings, feed_dict={images_placeholder: scaled_reshape[1], phase_train_placeholder: False })[0]

dist = np.sqrt(np.sum(np.square(emb_array1[0]-emb_array2[0])))
print("128维特征向量的欧氏距离:%f "%dist)

代码的逻辑就是

  1. 先导入模型参数
  2. 然后导入两张图片,分别获取其经过模型后得到的128维特征向量
  3. 最后计算两个向量的欧氏距离

代码中有几个参数:

  • image_size:图片长宽尺寸,这里要求输入的图片是长宽相等的,但是不要求两张人脸图大小一致,这里设置的尺寸是代码中会将人脸图读取后重新拉伸压缩成这个大小,这个尺寸最好比200大,太小了会运行失败
  • modeldir:预训练好的模型路径
  • image_name1:第一张人脸图的图片名
  • image_name2:第二张人脸图的图片名

实验

给两个不同人的人脸图片,得到的结果如下:

终端运行输出

如果比较两个相同的人脸图片,得到的距离会是零点几;如果是两张一样的图,得到的距离会是0,符合要求。

这里有我的工程代码:https://github.com/Cloudox/facenet_distance


查看作者首页

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容