贪心算法?

一道题

舍友拿来了一道看起来像脑筋急转弯的算法题:


输入:
测试数据组数,过桥人数和每个人单独过桥时间
输出:
所需最少时间


题目后面给了一组测试数据
输入:
1
4
1,2,5,10
输出:
17


17是怎么来的,怎么这么少啊。
定式思维一直想着用1送所有人,但这要19阿。


舍友又发来了程序


一看,没有指针,学C学的半吊子的我还能看的懂,那就看看吧。

先输入数据
while 循环
似乎重点就在sum取min 的那一行

  • sum后半部分思路:
    就是我的思路,用最小的分别去送其他的每一个。
  • 那前半部分是什么?
    仔细一看,思路是这样:
  • 1和2先过桥
  • 1回来送电筒
  • 最大的两个过桥
  • 2回来送电筒
  • 若剩下人数大于3的话, 1和2再过桥
    以此循环

两种思路取最小值,两个最大的过桥为一块,循环直到剩下人数<=3,然后根据剩下人数分三中情况,最后输出最小时间。

程序用来求最优解,将多人问题分解为两人两人的分块,以此循环,这好像就是贪心算法的题。


贪心算法是什么?

贪心算法(又称贪婪算法)是指,在对问题求解时总是做出在当前看来是最好的选择。不从整体最优上加以考虑,仅是在某种意义上的局部最优解。

  • 核心 根据题意选取一种量度标准
  • 性质 一种改进了的分级处理方法

概念简介

用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解。

虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。

对于一个给定的问题,往往可能有好几种量度标准,但其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。

根据当前状态做出在当前看来是最好的选择,即局部最优解选择,然后再去解做出这个选择后产生的相应的子问题。每做一次贪婪选择就将所求问题简化为一个规模更小的子问题,最终可得到问题的一个整体最优解。

基本思路

⒈ 建立数学模型来描述问题。
⒉ 把求解的问题分成若干个子问题。
⒊ 对每一子问题求解,得到子问题的局部最优解。
⒋ 把子问题的解局部最优解合成原来解问题的一个解。

最后再来看几道题

![能力有限,先mark](file:///storage/emulated/0/Tencent/QQ_Images/-308c1c8372cab577.jpg)

从零开始学贪心算法

1.钱币找零问题

假设1元、2元、5元、10元、20元、50元、100元的纸币分别有c0, c1, c2, c3, c4, c5, c6张。现在要用这些钱来支付K元,至少要用多少张纸币?

#include<iostream>
#include<algorithm>
using namespace std;
const int N=7; 
int Count[N]={3,0,2,1,0,3,5};
int Value[N]={1,2,5,10,20,50,100};
  
int solve(int money) 
{
    int num=0;
    for(int i=N-1;i>=0;i--) 
    {
        int c=min(money/Value[i],Count[i]);
        money=money-c*Value[i];
        num+=c;
    }
    if(money>0) num=-1;
    return num;
}
 
int main() 
{
    int money;
    cin>>money;
    int res=solve(money);
    if(res!=-1) cout<<res<<endl;
    else cout<<"NO"<<endl;
}
2.小船过河问题

只有一艘船,能乘2人,船的运行速度为2人中较慢一人的速度,过去后还需一个人把船划回来,问把n个人运到对岸,最少需要多久。

#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
    int a[1000],t,n,sum;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        sum=0;
        for(int i=0;i<n;i++) scanf("%d",&a[i]);
        while(n>3)
        {
            sum=min(sum+a[1]+a[0]+a[n-1]+a[1],sum+a[n-1]+a[0]+a[n-2]+a[0]);
            n-=2;
        }
        if(n==3) sum+=a[0]+a[1]+a[2];
        else if(n==2) sum+=a[1];
        else sum+=a[0];
        printf("%d\n",sum);
    }
}

好了,高数课也快下课了。


高数讲的好慢呐,哈哈哈哈哈
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,183评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,850评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,766评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,854评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,871评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,457评论 1 311
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,999评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,914评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,465评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,543评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,675评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,354评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,029评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,514评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,616评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,091评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,685评论 2 360

推荐阅读更多精彩内容

  • 目录 1.贪心算法步骤 2.两个关键要素 3.两种背包问题3.1 0-1背包问题(适用于动态规划,不满足贪心选择性...
    王侦阅读 4,950评论 2 3
  • 动态规划和贪心算法都是用来求最优化问题,且二者都必须具有最有子结构。贪心算法可以解决的问题,动态规划都能解决,可以...
    sereny阅读 6,613评论 0 7
  • 概述 在前文中解释了动态规划的基本思想,动态规划通过将一个问题划分为规模更小的有限个子问题进行求解,一般用于求解最...
    CodingTech阅读 2,680评论 0 10
  • 1、前言 求解最优化问题的算法通常会经历一系列步骤,在每个步骤都会面临多种选择,而许多最优化问题并不需要计算每个选...
    某昆阅读 1,612评论 1 5
  • 说到旅游,每个人都有自己的体会和感受,都有涛涛不绝的话要说给朋友们听。就说这次我陪老伴到广西柳州看望她们初中时期的...
    蜀国之子阅读 58评论 0 0