弱监督学习文章列表

https://zhuanlan.zhihu.com/p/23811946

1,  Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun."ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation". IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

2,  Pathak, Deepak, Philipp Krahenbuhl, and Trevor Darrell. "Constrained convolutional neural networks for weakly supervised segmentation."Proceedings of the IEEE International Conference on Computer Vision. 2015.

3,  Papandreou, George, et al. "Weakly-and semi-supervised learning of a DCNN for semantic image segmentation."arXiv preprint arXiv:1502.02734(2015).

4, Xu, Jia, Alexander G. Schwing, and Raquel Urtasun. "Learning to segment under various forms of weak supervision."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.




转自知乎 作者: travelsea

一, 基于bouding box的学习

1, Dai, Jifeng, Kaiming He, and Jian Sun. "Boxsup: Exploiting bounding boxes to supervise

convolutional networks for semantic segmentation." ICCV.  2015.

Abstract: propose a method only using bounding box annotation. The basic idea is to iterate between automatically generating region proposals and training CNNs. Good results obtained on PASCAL-2012 and PASCAL-CONTEXT.

2,Rajchl, Martin, et al. "DeepCut: Object Segmentation from Bounding Box Annotations using Convolutional Neural Networks." arXiv preprint arXiv:1605.07866 (2016).

Abstract: An extension from GrabCut method. The problem is formulated as an energy minimization problem over a densely-connected CRF and iteratively update the training targets. Applied this method to brain and lung segmentation problems on fetal MRI and obtained encouraging results.

二,基于scribbles的学习

1,Çiçek, Özgün, et al. "3d u-net: learning dense volumetric segmentation from sparse annotation." MICCAI 2016.

Abstract: Introduced a network for volumetric segmentation that learns from sparsely annotated volumetric images. It extended the U-Net to 3D and performs on-th-fly elastic deformation for efficient data agumentation during training.

2,Lin, Di, et al. "ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation." arXiv preprint arXiv:1604.05144 (2016).

Abstract: The algorithm is based on a graphic model that jointly propagates information from scribbles to unmarked pixels and learns network parameters. Excellent results were shown on PASCAL VOC and PASCAL CONTEXT datasets.

三, 基于image-tags的学习

1,Pathak, Deepak, Philipp Krahenbuhl, and Trevor Darrell. "Constrained convolutional neural

networks for weakly supervised segmentation." ICCV 2015.

Abstract: Present an approach to learn dense pixel-wise labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of a CNN classifier. Extensitive experiments demonstrate the generality of this new learning framework.

2, Vezhnevets, Alexander, and Joachim M. Buhmann. "Towards weakly supervised semantic segmentation

by means of multiple instance and multitask learning." CVPR 2010.

Abstract: Semantic Texton Forest (STF) is used as the basic framework and extended for the Multiple Instance Leraning setting. Multitask learning (MTL) is used to regularize the solution. Here, an external task of geometric context estimation is used to improve on the task of semantic segmentation. Experimental results on the MSRC21 VOC2007 datasets were shown.

四, 多种标记混合使用:image-tag, bounding box and scribbles:

1,Papandreou, George, et al. "Weakly-and semi-supervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv:1502.02734 (2015).

Abstract: Studied two problems (1) weakly annotated training data such as bounding boxes or image-level labels and (2) a combination of few strongly labeled and many weakly labeled images. EM methods were combined with the previously proposed DeepLab segmentation framework. Competitive results on PASCAL VOC 2012 were shown.

2,Xu, Jia, Alexander G. Schwing, and Raquel Urtasun. "Learning to segment under various forms of weak supervision." CVPR 2015.

Abstract: Proposed a unified approach that incorporates various forms of weak supervisions ( image level tags, bounding boxes, and partial labels) to produce a pixel-wise labeling. The task is formulated as a max-margin clustering framework, where knowledge from supervision is included via constraints, restricting the assignment of pixels to class labels. Experiments show that this method ourperforms the state-of-the-art 12% on per-class accuracy.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容

  • 行运收起了眼泪 刺芒披灼白驹岁月 驱动的四轮数着前世的公路牌 颠簸今生公里长廊 行云收起了眼泪 淌过清浅地桑田...
    今夏之秋阅读 284评论 0 4
  • 因为不知道写什么,所以我就准备写这个话题,也算是给自己找个写作的话题。 可能大家会感觉这个逻辑很怪,不过结果是很好...
    一寸明言阅读 336评论 0 3
  • 一场相思盼相逢, 两处闲愁苦别离。 又是一年中秋至, 遥望满月泪眼迷。
    诗无名阅读 197评论 0 3
  • 手机是否致癌,这可是一个极具争议性的问题。大部分人是抱着宁可信其有,也不信其无的态度。虽然科学家做了不少研究,可大...
    牛爸牛牛的爸爸阅读 306评论 0 2