model selection

Q: What are the model selection and data manipulation techniques you follow to solve a probelm?

a. Generally, i try almost everything for most problems

b. in priciple for:

    i. time series, GARCH, ARCH, regression, RIMA models.

    ii. Image classification, deep learning (convolutional nets)

    iii. Sound: commonly nns

    iv. High cardinality categorical (like text data), linear models, FTRL, Vowpal    wabbit,  LibFFM, libFM, SVD

     v. For everything else, everything, especially Gradient boosting machines (like XGBoost  and LightGBM) and deep learning (like keras, Lasagne, caffe, Cxxnet)

c. I decided what model to keep/drop in meta modelling with feature selection techniques, Furthermore the latter may be:

    i. Forward (cv or not)

    ii. Backward (cv or not)

    iii. Mixed (or stepwise)

    iv. Permutations

    v. Using feature importance or similar

    vi. Apply some stats logic

d. Data manipulation could be different for every problem:

    i. time series: moving averages, derivative, outlier removal

    ii. text: tfidf, countvectorizers, word2vec, svd (dimensionality reduction). Semming, spell checking, Sparse matrices. Likelihood encoding, one hot encoding (or dummies).

   iii. image classification, scalling, resizing, removing noise (smoothing), annotating

    iv. sounds: Furrier Transformations, MFCC (MeI frequency cepstral coefficients), Low pass filters

    v. everything else:

notes: deep learning in python to deal with text probelms: Keras (support sparse data), Gensim (for word2vec)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 仍然记得 初相遇那个夜晚 你扎着的头发 你绿色的衣 记得你的声音 我无意录进了心里 初相遇是一个普通的意外 谁也没...
    另林阅读 1,648评论 4 2
  • 哗啦啦! 当玄尊那略显森冷的声音响彻而起时,天地间似是有着水流之声忽然的响起,再然后,那无数道视线便是震动的见到,...
    混沌天书阅读 3,828评论 0 0
  • 啦啦啦,又是一个寂静而又焦躁的夜晚。每一次每一次当重要时刻来临时我都是这样急躁不安,因为我害怕,害怕自己永远一事无...
    消暑小可爱阅读 1,369评论 0 0
  • 立观通沟四百年,青砖青瓦挑青檐。 柳催新绿生于干,药济寒民结自缘。 风雨歇鞍曾住宿,春秋留义久盈签。 今来悟得真言...
    天狼1阅读 2,394评论 1 0

友情链接更多精彩内容