数据结构与算法笔记day23:动态规划

    1初识动态规划

        这节课的内容不涉及动态规划的理论,而是通过两个例子:0-1背包问题0-1背包问题升级版,展示了动态规划是如何解决问题的。这两个例子都是非常经典的动态规划问题,只要真正搞懂它们,基本上动态规划已经入门一半了。

        从例子中我们可以发现,大部分动态规划能解决的问题,都可以通过回溯法来解决,只不过回溯算法解决起来效率比较低,时间复杂度是指数级的。动态规划算法,在执行效率方面,要高很多。尽管执行效率提高了,但是动态规划的空间复杂度也提高了,所以很多时候,我们会说动态规划是一种空间换时间的算法思想。

    2动态规划理论

        什么样的问题适合用动态规划解决呢?这些问题可以总结概括为“一个模型三个特征”。其中,“一个模型”指的是,问题可以抽象成分阶段决策最优解模型。“三个特征”指的是最优子节无后效性重复性子问题

        动态规划的解题思路有两种,分别是状态转移表法和状态转移方程法。其中,状态转移表法解题思路大致可以概括为,回溯算法实现-定义状态-画递归树-找重复子问题-画状态转移表-根据递推关系填表-将填表过程翻译成代码。状态转移方程法的大致思路可以概括为,找最优子结构-写状态转移方程-将状态转移方程翻译成代码。

        对比之前讲过的四种算法思想,贪心、回溯、动态规划可以解决的问题模型类似,都可以抽象成多阶段决策最优解模型。尽管分治算法也能解决最优问题,但是大部分问题的背景都不适合抽象成多阶段决策模型。

    3动态规划实战

        这节课讲了一个例子:如何实现搜索引擎中的拼写纠错功能

        我们引入了编辑距离这个概念,它用来量化两个字符串的相似度,从而进行最合适的纠错提示。编辑距离有多种不同的计算方式,比较著名的有莱文斯坦距离最长公共子串长度

        当然,真正用于商用的的搜索引擎,拼写纠错功能没有我们例子中讲的那么简单,它有很多种优化思路。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容