缓存与数据库的一致性问题深入解析

本文转载自后端技术漫谈,原文链接 https://mp.weixin.qq.com/s/-0_ReIv2bp5snq3NUI3P7A,文章内容有部分删减。

当我们在做数据库与缓存数据同步时,究竟更新缓存,还是删除缓存,究竟是先操作数据库,还是先操作缓存?本文带大家深度分析数据库与缓存的双写问题,并且给出了所有方案的实现代码方便大家参考。

不更新缓存,而是删除缓存

大部分观点认为,做缓存不应该是去更新缓存,而是应该删除缓存,然后由下个请求去去缓存,发现不存在后再读取数据库,写入缓存。

观点引用:《分布式之数据库和缓存双写一致性方案解析》孤独烟

原因一:线程安全角度

同时有请求A和请求B进行更新操作,那么会出现

(1)线程A更新了数据库

(2)线程B更新了数据库

(3)线程B更新了缓存

(4)线程A更新了缓存

这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。

原因二:业务场景角度

有如下两点:

(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。

(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

其实如果业务非常简单,只是去数据库拿一个值,写入缓存,那么更新缓存也是可以的。但是,淘汰缓存操作简单,并且带来的副作用只是增加了一次cache miss,建议作为通用的处理方式。

先操作缓存,还是先操作数据库?

那么问题就来了,我们是先删除缓存,然后再更新数据库,还是先更新数据库,再删缓存呢?

先来看看大佬们怎么说。《【58沈剑架构系列】缓存架构设计细节二三事》58沈剑:

对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:如果出现不一致,谁先做对业务的影响较小,就谁先执行。

假设先淘汰缓存,再写数据库:第一步淘汰缓存成功,第二步写数据库失败,则只会引发一次Cache miss。

假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧数据,数据不一致。

沈剑老师说的没有问题,不过没完全考虑好并发请求时的数据脏读问题,让我们再来看看孤独烟老师《分布式之数据库和缓存双写一致性方案解析》:

先删缓存,再更新数据库

该方案会导致请求数据不一致。假设同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:

(1)请求A进行写操作,删除缓存

(2)请求B查询发现缓存不存在

(3)请求B去数据库查询得到旧值

(4)请求B将旧值写入缓存

(5)请求A将新值写入数据库

上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

所以先删缓存,再更新数据库并不是一劳永逸的解决方案,再看看先更新数据库,再删缓存这种方案怎么样?

先更新数据库,再删缓存这种情况不存在并发问题么?

不是的。假设同时有一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生

(1)缓存刚好失效

(2)请求A查询数据库,得一个旧值

(3)请求B将新值写入数据库

(4)请求B删除缓存

(5)请求A将查到的旧值写入缓存

ok,如果发生上述情况,确实是会发生脏数据。

然而,发生这种情况的概率又有多少呢?

发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。

先更新数据库,再删缓存依然会有问题,不过,问题出现的可能性会因为上面说的原因,变得比较低!

所以,如果你想实现基础的缓存数据库双写一致的逻辑,那么在大多数情况下,在不想做过多设计,增加太大工作量的情况下,请先更新数据库,再删缓存!

非要保证数据库和缓存数据强一致性该怎么办?

那么,如果我非要保证绝对一致性怎么办,先给出结论:

没有办法做到绝对的一致性,这是由CAP理论决定的,缓存系统适用的场景就是非强一致性的场景,所以它属于CAP中的AP。

CAP 定理又被称作布鲁尔定理,,它指出对于一个分布式计算系统来说,不可能同时满足以下三点:

  • 一致性(Consistency)(等同于所有节点访问同一份最新的数据副本)
  • 可用性(Availability)(每次请求都能获取到非错的相应——但是不保证获取的数据为最新数据)
  • 分区容错性(Partition tolerance)(以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。)

所以,我们得委曲求全,可以去做到BASE理论中说的最终一致性

最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性

大佬们给出了到达最终一致性的解决思路,主要是针对上面两种双写策略(先删缓存,再更新数据库/先更新数据库,再删缓存)导致的脏数据问题,进行相应的处理,来保证最终一致性。

缓存延时双删

问:先删除缓存,再更新数据库中如何避免脏数据?

答:采用延时双删策略。

上文我们提到,在先删除缓存,再更新数据库的情况下,如果不给缓存设置过期时间,那么该数据永远都是脏数据。

那么延时双删怎么解决这个问题呢?

(1)先淘汰缓存

(2)再写数据库(这两步和原来一样)

(3)休眠1秒,再次淘汰缓存

这么做,可以将1秒内所造成的缓存脏数据,再次删除。

那么,这个1秒怎么确定的,具体该休眠多久呢?

针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。

如果你用了mysql的读写分离架构怎么办?

ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。

(1)请求A进行写操作,删除缓存

(2)请求A将数据写入数据库了,

(3)请求B查询缓存发现,缓存没有值

(4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值

(5)请求B将旧值写入缓存

(6)数据库完成主从同步,从库变为新值

上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。

采用这种同步淘汰策略,吞吐量降低怎么办?

ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。

所以在先删除缓存,再更新数据库的情况下,可以使用延时双删的策略,来保证脏数据只会存活一段时间,就会被准确的数据覆盖。

在先更新数据库,再删缓存的情况下,缓存出现脏数据的情况虽然可能性极小,但也会出现。我们依然可以用延时双删策略,在请求A对缓存写入了脏的旧值之后,再次删除缓存。来保证去掉脏缓存。

删缓存失败了怎么办:重试机制

看似问题都已经解决了,但其实,还有一个问题没有考虑到,那就是删除缓存的操作,失败了怎么办?比如延时双删的时候,第二次缓存删除失败了,那不还是没有清除脏数据吗?

解决方案就是再加上一个重试机制,保证删除缓存成功。

参考孤独烟老师给的方案图:

方案一:

流程如下所示

(1)更新数据库数据;

(2)缓存因为种种问题删除失败

(3)将需要删除的key发送至消息队列

(4)自己消费消息,获得需要删除的key

(5)继续重试删除操作,直到成功

然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。

方案二:

流程如下图所示:

(1)更新数据库数据

(2)数据库会将操作信息写入binlog日志当中

(3)订阅程序提取出所需要的数据以及key

(4)另起一段非业务代码,获得该信息

(5)尝试删除缓存操作,发现删除失败

(6)将这些信息发送至消息队列

(7)重新从消息队列中获得该数据,重试操作。

这里读取binlog的中间件,可以采用阿里开源的canal。

好了,到这里我们已经把缓存双写一致性的思路彻底梳理了一遍,下面就是我对这几种思路徒手写的实战代码,方便有需要的朋友参考。

小结

引用陈浩《缓存更新的套路》最后的总结语作为小结:

分布式系统里要么通过2PC或是Paxos协议保证一致性,要么就是拼命的降低并发时脏数据的概率

缓存系统适用的场景就是非强一致性的场景,所以它属于CAP中的AP,BASE理论。

异构数据库本来就没办法强一致,只是尽可能减少时间窗口,达到最终一致性

还有别忘了设置过期时间,这是个兜底方案。

文章内容大致可以总结为如下几点:

  • 对于读多写少的数据,请使用缓存。
  • 为了保持数据库和缓存的一致性,会导致系统吞吐量的下降。
  • 为了保持数据库和缓存的一致性,会导致业务代码逻辑复杂。
  • 缓存做不到绝对一致性,但可以做到最终一致性。
  • 对于需要保证缓存数据库数据一致的情况,请尽量考虑对一致性到底有多高要求,选定合适的方案,避免过度设计。

参考

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343