本文转载自后端技术漫谈,原文链接 https://mp.weixin.qq.com/s/-0_ReIv2bp5snq3NUI3P7A,文章内容有部分删减。
当我们在做数据库与缓存数据同步时,究竟更新缓存,还是删除缓存,究竟是先操作数据库,还是先操作缓存?本文带大家深度分析数据库与缓存的双写问题,并且给出了所有方案的实现代码方便大家参考。
不更新缓存,而是删除缓存
大部分观点认为,做缓存不应该是去更新缓存,而是应该删除缓存,然后由下个请求去去缓存,发现不存在后再读取数据库,写入缓存。
观点引用:《分布式之数据库和缓存双写一致性方案解析》孤独烟
原因一:线程安全角度
同时有请求A和请求B进行更新操作,那么会出现
(1)线程A更新了数据库
(2)线程B更新了数据库
(3)线程B更新了缓存
(4)线程A更新了缓存
这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。
原因二:业务场景角度
有如下两点:
(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。
(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。
其实如果业务非常简单,只是去数据库拿一个值,写入缓存,那么更新缓存也是可以的。但是,淘汰缓存操作简单,并且带来的副作用只是增加了一次cache miss,建议作为通用的处理方式。
先操作缓存,还是先操作数据库?
那么问题就来了,我们是先删除缓存,然后再更新数据库,还是先更新数据库,再删缓存呢?
先来看看大佬们怎么说。《【58沈剑架构系列】缓存架构设计细节二三事》58沈剑:
对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:如果出现不一致,谁先做对业务的影响较小,就谁先执行。
假设先淘汰缓存,再写数据库:第一步淘汰缓存成功,第二步写数据库失败,则只会引发一次Cache miss。
假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧数据,数据不一致。
沈剑老师说的没有问题,不过没完全考虑好并发请求时的数据脏读问题,让我们再来看看孤独烟老师《分布式之数据库和缓存双写一致性方案解析》:
先删缓存,再更新数据库
该方案会导致请求数据不一致。假设同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:
(1)请求A进行写操作,删除缓存
(2)请求B查询发现缓存不存在
(3)请求B去数据库查询得到旧值
(4)请求B将旧值写入缓存
(5)请求A将新值写入数据库
上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。
所以先删缓存,再更新数据库并不是一劳永逸的解决方案,再看看先更新数据库,再删缓存这种方案怎么样?
先更新数据库,再删缓存这种情况不存在并发问题么?
不是的。假设同时有一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生
(1)缓存刚好失效
(2)请求A查询数据库,得一个旧值
(3)请求B将新值写入数据库
(4)请求B删除缓存
(5)请求A将查到的旧值写入缓存
ok,如果发生上述情况,确实是会发生脏数据。
然而,发生这种情况的概率又有多少呢?
发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。
先更新数据库,再删缓存依然会有问题,不过,问题出现的可能性会因为上面说的原因,变得比较低!
所以,如果你想实现基础的缓存数据库双写一致的逻辑,那么在大多数情况下,在不想做过多设计,增加太大工作量的情况下,请先更新数据库,再删缓存!
非要保证数据库和缓存数据强一致性该怎么办?
那么,如果我非要保证绝对一致性怎么办,先给出结论:
没有办法做到绝对的一致性,这是由CAP理论决定的,缓存系统适用的场景就是非强一致性的场景,所以它属于CAP中的AP。
CAP 定理又被称作布鲁尔定理,,它指出对于一个分布式计算系统来说,不可能同时满足以下三点:
- 一致性(Consistency)(等同于所有节点访问同一份最新的数据副本)
- 可用性(Availability)(每次请求都能获取到非错的相应——但是不保证获取的数据为最新数据)
- 分区容错性(Partition tolerance)(以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。)
所以,我们得委曲求全,可以去做到BASE理论中说的最终一致性。
最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性
大佬们给出了到达最终一致性的解决思路,主要是针对上面两种双写策略(先删缓存,再更新数据库/先更新数据库,再删缓存)导致的脏数据问题,进行相应的处理,来保证最终一致性。
缓存延时双删
问:先删除缓存,再更新数据库中如何避免脏数据?
答:采用延时双删策略。
上文我们提到,在先删除缓存,再更新数据库的情况下,如果不给缓存设置过期时间,那么该数据永远都是脏数据。
那么延时双删怎么解决这个问题呢?
(1)先淘汰缓存
(2)再写数据库(这两步和原来一样)
(3)休眠1秒,再次淘汰缓存
这么做,可以将1秒内所造成的缓存脏数据,再次删除。
那么,这个1秒怎么确定的,具体该休眠多久呢?
针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。
如果你用了mysql的读写分离架构怎么办?
ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。
(1)请求A进行写操作,删除缓存
(2)请求A将数据写入数据库了,
(3)请求B查询缓存发现,缓存没有值
(4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值
(5)请求B将旧值写入缓存
(6)数据库完成主从同步,从库变为新值
上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。
采用这种同步淘汰策略,吞吐量降低怎么办?
ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。
所以在先删除缓存,再更新数据库的情况下,可以使用延时双删的策略,来保证脏数据只会存活一段时间,就会被准确的数据覆盖。
在先更新数据库,再删缓存的情况下,缓存出现脏数据的情况虽然可能性极小,但也会出现。我们依然可以用延时双删策略,在请求A对缓存写入了脏的旧值之后,再次删除缓存。来保证去掉脏缓存。
删缓存失败了怎么办:重试机制
看似问题都已经解决了,但其实,还有一个问题没有考虑到,那就是删除缓存的操作,失败了怎么办?比如延时双删的时候,第二次缓存删除失败了,那不还是没有清除脏数据吗?
解决方案就是再加上一个重试机制,保证删除缓存成功。
参考孤独烟老师给的方案图:
方案一:
流程如下所示
(1)更新数据库数据;
(2)缓存因为种种问题删除失败
(3)将需要删除的key发送至消息队列
(4)自己消费消息,获得需要删除的key
(5)继续重试删除操作,直到成功
然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。
方案二:
流程如下图所示:
(1)更新数据库数据
(2)数据库会将操作信息写入binlog日志当中
(3)订阅程序提取出所需要的数据以及key
(4)另起一段非业务代码,获得该信息
(5)尝试删除缓存操作,发现删除失败
(6)将这些信息发送至消息队列
(7)重新从消息队列中获得该数据,重试操作。
这里读取binlog的中间件,可以采用阿里开源的canal。
好了,到这里我们已经把缓存双写一致性的思路彻底梳理了一遍,下面就是我对这几种思路徒手写的实战代码,方便有需要的朋友参考。
小结
引用陈浩《缓存更新的套路》最后的总结语作为小结:
分布式系统里要么通过2PC或是Paxos协议保证一致性,要么就是拼命的降低并发时脏数据的概率
缓存系统适用的场景就是非强一致性的场景,所以它属于CAP中的AP,BASE理论。
异构数据库本来就没办法强一致,只是尽可能减少时间窗口,达到最终一致性。
还有别忘了设置过期时间,这是个兜底方案。
文章内容大致可以总结为如下几点:
- 对于读多写少的数据,请使用缓存。
- 为了保持数据库和缓存的一致性,会导致系统吞吐量的下降。
- 为了保持数据库和缓存的一致性,会导致业务代码逻辑复杂。
- 缓存做不到绝对一致性,但可以做到最终一致性。
- 对于需要保证缓存数据库数据一致的情况,请尽量考虑对一致性到底有多高要求,选定合适的方案,避免过度设计。
参考
- https://cloud.tencent.com/developer/article/1574827
- https://www.jianshu.com/p/2936a5c65e6b
- https://www.cnblogs.com/rjzheng/p/9041659.html
- https://www.cnblogs.com/codeon/p/8287563.html
- https://www.jianshu.com/p/0275ecca2438
- https://www.jianshu.com/p/dc1e5091a0d8
- https://coolshell.cn/articles/17416.html